A128326 G.f.: A(x) = 1 + G(G(G(x))), where G(x) = x + x*G(G(x)) is the g.f. of A030266.
1, 1, 3, 12, 57, 305, 1787, 11269, 75629, 535960, 3987913, 31021693, 251445581, 2117993712, 18499513147, 167246537937, 1562556275281, 15066167302802, 149737897716757, 1532313152898208, 16129331500727047
Offset: 0
Keywords
Programs
-
PARI
{a(n)=local(A=1+x,B);for(i=0,n,A = 1 + x*A * subst(A,x,x*A+x*O(x^n))); B=A;B=subst(B,x,x*A+x*O(x^n));polcoeff(B,n)} for(n=0, 30, print1(a(n), ", ")) -
PARI
{a(n)=local(A=1+x+x*O(x^n)); for(i=1, n, A = 1/subst(1-x*A, x, x/(1-x*A +x*O(x^n))) ); polcoeff(A, n)} for(n=0, 30, print1(a(n), ", "))
Formula
G.f. satisfies: A(x) = x/(1 - A( x/(1 - A(x)) )) when offset is taken to be 1. - Paul D. Hanna, Dec 20 2014
Comments