A128385 a(n) = denominator of r(n): r(n) is such that the continued fraction (of rational terms) [r(1);r(2),...,r(n)] = b(n) for every positive integer n, where b(1) = 1 and b(n+1) = 1 + 1/b(n)^2 for.every positive integer n.
1, 1, 3, 13, 289, 1645423, 7499988983197, 1716234423353399580977511919, 12985299047930678223817284541389710796223289877600061663
Offset: 1
Examples
{r(n)}: 1, 1, 1/3, 9/13, 91/289,... b(4) = 41/25 = 1 + 1/(1 + 1/(1/3 + 13/9)). And b(5) = 2306/1681 = 1 + 1/(1 + 1/(1/3 + 1/(9/13 + 289/91))).
Programs
-
PARI
see A128384.
Extensions
More terms from Michel Marcus, Jan 12 2014
Comments