A128386 Expansion of c(3*x^2)/(1-x*c(3*x^2)), c(x) the g.f. of A000108.
1, 1, 4, 7, 28, 58, 232, 523, 2092, 4966, 19864, 48838, 195352, 492724, 1970896, 5068915, 20275660, 52955950, 211823800, 560198962, 2240795848, 5987822380, 23951289520, 64563867454, 258255469816, 701383563388, 2805534253552
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Alin Bostan, Computer Algebra for Lattice Path Combinatorics, Slides, Séminaire de Combinatoire Ph. Flajolet, March 28 2013.
- Alin Bostan, Andrew Elvey Price, Anthony John Guttmann, and Jean-Marie Maillard, Stieltjes moment sequences for pattern-avoiding permutations, arXiv:2001.00393 [math.CO], 2020.
Programs
-
Magma
R
:=PowerSeriesRing(Rationals(), 40); Coefficients(R!( (Sqrt(1-12*x^2)+2*x-1)/(2*x*(1-4*x)) )); // G. C. Greubel, Nov 07 2022 -
Mathematica
A120730[n_, k_]:= If[n>2*k, 0, Binomial[n,k]*(2*k-n+1)/(k+1)]; A126386[n_]:= Sum[3^k*A120730[n, n-k], {k,0,n}]; Table[A126386[n], {n,0,50}] (* G. C. Greubel, Nov 07 2022 *)
-
SageMath
def A120730(n, k): return 0 if (n>2*k) else binomial(n, k)*(2*k-n+1)/(k+1) def A126386(n): return sum(3^k*A120730(n,n-k) for k in range(n+1)) [A126386(n) for n in range(51)] # G. C. Greubel, Nov 07 2022
Formula
G.f.: (sqrt(1-12*x^2)+2*x-1)/(2*x*(1-4*x)).
a(n) = (1/(n+1))*Sum_{k=0..n+1} Sum_{j=0..k} C(n,k)*C(k,j)*C(2*n-2*k+j, n-2*k+j)*(-1)^(n+j)*2^(2*k-j).
a(n) = Sum_{k=0..floor(n/2)} C(n,n-k)*(n-2*k+1)*3^k/(n-k+1);
a(n) = Sum_{k=0..floor(n/2)} A009766(n-k,k)*3^k.
a(n) = Sum_{k=0..n} 3^k*A120730(n,n-k). - Philippe Deléham, Mar 03 2007
D-finite with recurrence (n+1)*a(n) - 4*(n+1)*a(n-1) + 12*(2-n)*a(n-2) + 48*(n-2)*a(n-3) = 0. - R. J. Mathar, Nov 14 2011
Comments