cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A128386 Expansion of c(3*x^2)/(1-x*c(3*x^2)), c(x) the g.f. of A000108.

Original entry on oeis.org

1, 1, 4, 7, 28, 58, 232, 523, 2092, 4966, 19864, 48838, 195352, 492724, 1970896, 5068915, 20275660, 52955950, 211823800, 560198962, 2240795848, 5987822380, 23951289520, 64563867454, 258255469816, 701383563388, 2805534253552
Offset: 0

Views

Author

Paul Barry, Feb 28 2007

Keywords

Comments

Hankel transform is 3^C(n+1,2) = A047656(n+1).
Series reversion of x*(1+x)/(1+2*x+4*x^2).

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Rationals(), 40); Coefficients(R!( (Sqrt(1-12*x^2)+2*x-1)/(2*x*(1-4*x)) )); // G. C. Greubel, Nov 07 2022
    
  • Mathematica
    A120730[n_, k_]:= If[n>2*k, 0, Binomial[n,k]*(2*k-n+1)/(k+1)];
    A126386[n_]:= Sum[3^k*A120730[n, n-k], {k,0,n}];
    Table[A126386[n], {n,0,50}] (* G. C. Greubel, Nov 07 2022 *)
  • SageMath
    def A120730(n, k): return 0 if (n>2*k) else binomial(n, k)*(2*k-n+1)/(k+1)
    def A126386(n): return sum(3^k*A120730(n,n-k) for k in range(n+1))
    [A126386(n) for n in range(51)] # G. C. Greubel, Nov 07 2022

Formula

G.f.: (sqrt(1-12*x^2)+2*x-1)/(2*x*(1-4*x)).
a(n) = (1/(n+1))*Sum_{k=0..n+1} Sum_{j=0..k} C(n,k)*C(k,j)*C(2*n-2*k+j, n-2*k+j)*(-1)^(n+j)*2^(2*k-j).
a(n) = Sum_{k=0..floor(n/2)} C(n,n-k)*(n-2*k+1)*3^k/(n-k+1);
a(n) = Sum_{k=0..floor(n/2)} A009766(n-k,k)*3^k.
a(n) = Sum_{k=0..n} 3^k*A120730(n,n-k). - Philippe Deléham, Mar 03 2007
D-finite with recurrence (n+1)*a(n) - 4*(n+1)*a(n-1) + 12*(2-n)*a(n-2) + 48*(n-2)*a(n-3) = 0. - R. J. Mathar, Nov 14 2011