A128387 Expansion of c(5x^2)/(1-x*c(5x^2)), where c(x) is the g.f. of A000108.
1, 1, 6, 11, 66, 146, 876, 2131, 12786, 32966, 197796, 530526, 3183156, 8786436, 52718616, 148733571, 892401426, 2561439806, 15368638836, 44731364266, 268388185596, 790211926076, 4741271556456, 14095578557486
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
Programs
-
Magma
R
:=PowerSeriesRing(Rationals(), 50); Coefficients(R!( (Sqrt(1-20*x^2)+2*x-1)/(2*x*(1-6*x)) )); // G. C. Greubel, Nov 07 2022 -
Mathematica
A120730[n_, k_]:= If[n>2*k, 0, Binomial[n, k]*(2*k-n+1)/(k+1)]; A126387[n_]:= Sum[5^k*A120730[n, n-k], {k,0,n}]; Table[A126387[n], {n, 0, 50}] (* G. C. Greubel, Nov 07 2022 *)
-
SageMath
def A120730(n, k): return 0 if (n>2*k) else binomial(n, k)*(2*k-n+1)/(k+1) def A126387(n): return sum(5^k*A120730(n,n-k) for k in range(n+1)) [A126387(n) for n in range(51)] # G. C. Greubel, Nov 07 2022
Formula
G.f.: (sqrt(1-20*x^2) + 2*x - 1)/(2*x*(1-6*x)).
a(n) = (1/(n+1))*Sum_{k=0..n+1} Sum_{j=0..k} C(n,k)*C(k,j)*C(2*n-2*k+j, n-2*k+j)*(-1)^(n+j)*2^j*6^(k-j).
a(n) = Sum_{k=0..floor(n/2)} C(n,n-k)*(n-2*k+1)*5^k/(n-k+1).
a(n) = Sum_{k=0..floor(n/2)} A009766(n-k,k)*5^k.
a(n) = Sum_{k=0..n} 5^k*A120730(n,n-k). - Philippe Deléham, Mar 03 2007
(n+1)*a(n) = 6*(n+1)*a(n-1) + 20*(n-2)*a(n-2) - 120*(n-2)*a(n-3). - R. J. Mathar, Nov 14 2011
Comments