cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A216917 Square array read by antidiagonals, T(N,n) = lcm{1<=j<=N, gcd(j,n)=1 | j} for N >= 0, n >= 1.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 6, 1, 1, 1, 12, 3, 2, 1, 1, 60, 3, 2, 1, 1, 1, 60, 15, 4, 3, 2, 1, 1, 420, 15, 20, 3, 6, 1, 1, 1, 840, 105, 20, 15, 12, 1, 2, 1, 1, 2520, 105, 140, 15, 12, 1, 6, 1, 1, 1, 2520, 315, 280, 105, 12, 5, 12, 3, 2, 1, 1, 27720, 315, 280, 105, 84
Offset: 1

Views

Author

Peter Luschny, Oct 02 2012

Keywords

Comments

T(N,n) is the least common multiple of all integers up to N that are relatively prime to n.
Replacing LCM in the definition with "product" gives the Gauss factorial A216919.

Examples

			   n | N=0 1 2 3  4  5  6   7   8    9   10
-----+-------------------------------------
   1 |   1 1 2 6 12 60 60 420 840 2520 2520
   2 |   1 1 1 3  3 15 15 105 105  315  315
   3 |   1 1 2 2  4 20 20 140 280  280  280
   4 |   1 1 1 3  3 15 15 105 105  315  315
   5 |   1 1 2 6 12 12 12  84 168  504  504
   6 |   1 1 1 1  1  5  5  35  35   35   35
   7 |   1 1 2 6 12 60 60  60 120  360  360
   8 |   1 1 1 3  3 15 15 105 105  315  315
   9 |   1 1 2 2  4 20 20 140 280  280  280
  10 |   1 1 1 3  3  3  3  21  21   63   63
  11 |   1 1 2 6 12 60 60 420 840 2520 2520
  12 |   1 1 1 1  1  5  5  35  35   35   35
  13 |   1 1 2 6 12 60 60 420 840 2520 2520
		

Programs

  • Mathematica
    t[, 0] = 1; t[n, k_] := LCM @@ Select[Range[k], CoprimeQ[#, n]&]; Table[t[n - k + 1, k], {n, 0, 11}, {k, n, 0, -1}] // Flatten (* Jean-François Alcover, Jul 29 2013 *)
  • Sage
    def A216917(N, n):
        return lcm([j for j in (1..N) if gcd(j, n) == 1])
    for n in (1..13): [A216917(N,n) for N in (0..10)]

Formula

For n > 0:
A(n,1) = A003418(n);
A(n,2^k) = A217858(n) for k > 0;
A(n,3^k) = A128501(n-1) for k > 0;
A(2,n) = A000034(n);
A(3,n) = A129203(n-1);
A(4,n) = A129197(n-1);
A(n,n) = A038610(n);
A(floor(n/2),n) = A124443(n);
A(n,1)/A(n,n) = A064446(n);
A(n,1)/A(n,2) = A053644(n).

A217858 Odd part of lcm(1,2,3,...,n).

Original entry on oeis.org

1, 1, 3, 3, 15, 15, 105, 105, 315, 315, 3465, 3465, 45045, 45045, 45045, 45045, 765765, 765765, 14549535, 14549535, 14549535, 14549535, 334639305, 334639305, 1673196525, 1673196525, 5019589575, 5019589575, 145568097675, 145568097675, 4512611027925, 4512611027925, 4512611027925
Offset: 1

Views

Author

Joerg Arndt, Oct 13 2012

Keywords

Examples

			a(8) is the least common multiple of {1,3,5,7}.
		

Crossrefs

Programs

Formula

a(n) = A000265( A003418(n) ).
a(n) = lcm_{1 <= k <= n, k odd}. - Peter Luschny, Oct 15 2012
a(n) = A025547(floor((n+1)/2)). - Georg Fischer, Nov 29 2022

A128500 Numerators of partial sums for a series for Pi/(3*sqrt(3)).

Original entry on oeis.org

1, 1, 1, 3, 11, 11, 97, 159, 159, 187, 1777, 1777, 26181, 23321, 23321, 51647, 797919, 797919, 16521821, 15228529, 15228529, 16404249, 351431887, 351431887, 1876142299, 1761735699, 1761735699, 1867970399, 51196569971, 51196569971
Offset: 0

Views

Author

Wolfdieter Lang Apr 04 2007

Keywords

Comments

The denominators are given in A128501.
The limit n -> infinity of the rationals r(n) defined below is Pi/(3*sqrt(3)).

Examples

			Rationals: [1, 1/2, 1/2, 3/4, 11/20, 11/20, 97/140, 159/280, 159/280, 187/280,...]
Pi/(3*sqrt(3))=+1/1 -1/2 +1/4 -1/5 +1/7 -1/8 +1/10 -1/11 +1/13 -+
		

Formula

a(n)=numerator(r(n)) with the rationals r(n):=Sum_{k=0..n} ((-1)^k)*S(k,1)/(k+1) with Chebyshev's S-Polynomials S(k,1)=[1,1,0,-1,-1,0] periodic sequence with period 6. See A010892.
Showing 1-3 of 3 results.