cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A128511 Numbers which are both lucky and pentagonal.

Original entry on oeis.org

1, 51, 477, 651, 925, 2625, 5551, 6501, 9801, 17767, 20475, 25285, 26467, 29751, 39285, 45327, 67947, 75825, 84135, 84847, 95887, 99717, 102051, 114955, 135751, 151527, 154401, 178365, 245835, 261877, 272001, 275847, 287547, 292825, 307587
Offset: 1

Views

Author

Jonathan Vos Post, May 07 2007

Keywords

Comments

Second row of array T(k,n) = n-th Lucky number which is also a (k+3)-gonal number, for nonnegative k, whose zeroth and first rows are: A118565 Numbers which are both lucky and triangular. A031162 Numbers that are both lucky and square.

Examples

			a(2) = 51 = A000959(14) = A000326(6).
a(3) = 477 = A000959(81) = A000326(18).
		

Crossrefs

Programs

  • Maple
    isA000326 := proc(n) local di ; if issqr(1+24*n) or n =0 then di := 1+sqrt(1+24*n); if di mod 6 = 0 or n = 0 then true ; else false ; fi ; else false ; fi; end: lin := fscanf("b000959.txt","%d %d") : while lin <> [] do a := op(2,lin) ; if isA000326( a ) then printf("%d, ",a) ; fi ; lin := fscanf("b000959.txt","%d %d") ; od : # R. J. Mathar, May 13 2007
  • Mathematica
    lim=320000;lp=Ceiling[Sqrt[2lim/3]];lL=lim/2;p=Array[# (3 # - 1)/2 &, lp, 0] ;L = Table[2*i + 1, {i, 0, lL}]; For[n = 2, n < Length[L], r = L[[n++]]; L = ReplacePart[L, Table[r*i -> Nothing, {i, 1, Length[L]/r}]]];Select[Range[lim],MemberQ[p,#]&&MemberQ[L,#]&] (* James C. McMahon, Jan 09 2025 *)

Formula

A000959 INTERSECTION A000326 = A000959 INTERSECTION {n*(3*n-1)/2}.

Extensions

More terms from R. J. Mathar, May 13 2007