cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A128591 Expansion of f(x, x^5) * f(x, x^3) in powers of x where f(, ) is Ramanujan's general theta function.

Original entry on oeis.org

1, 2, 1, 1, 1, 1, 2, 1, 2, 1, 1, 3, 0, 0, 1, 2, 2, 1, 1, 1, 1, 2, 3, 1, 1, 0, 2, 1, 1, 2, 0, 2, 0, 2, 1, 0, 4, 2, 0, 1, 1, 2, 1, 2, 2, 1, 2, 0, 1, 1, 2, 0, 1, 1, 1, 2, 2, 2, 0, 1, 1, 3, 1, 1, 0, 1, 4, 1, 2, 1, 0, 4, 0, 0, 1, 1, 2, 1, 2, 1, 1, 0, 1, 1, 1, 2, 3
Offset: 0

Views

Author

Michael Somos, Mar 11 2007

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 1 + 2*x + x^2 + x^3 + x^4 + x^5 + 2*x^6 + x^7 + 2*x^8 + x^9 + x^10 + 3*x^11 + ...
G.f. = q^11 + 2*q^35 + q^59 + q^83 + q^107 + q^131 + 2*q^155 + q^179 + 2*q^203 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ 2^(-3/2) x^(-1/2) QPochhammer[ -x, x^2] EllipticTheta[ 2, 0, x^(1/2)] EllipticTheta[ 2, Pi/4, x^(3/2)], {x, 0, n}]; (* Michael Somos, Nov 15 2015 *)
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff(  eta(x^2 + A)^4 * eta(x^3 + A) * eta(x^12 + A)  / (eta(x + A)^2 * eta(x^4 + A) * eta(x^6 + A)), n))};

Formula

Expansion of chi(x) * psi(x) * psi(-x^3) in powers of x where psi(), chi() are Ramanujan theta functions. - Michael Somos, Nov 15 2015
Expansion of q^(-11/24) * eta(q^2)^4 * eta(q^3) * eta(q^12) / (eta(q)^2 * eta(q^4) * eta(q^6)) in powers of q.
Euler transform of period 12 sequence [ 2, -2, 1, -1, 2, -2, 2, -1, 1, -2, 2, -2, ...].
a(n) = A128582(4*n + 1).
2 * a(n) = A257920(3*n + 1). - a(n) = A260118(4*n + 1). 2 * a(n) = A257921(6*n + 2). -2 * a(n) = A128580(12*n + 5) = A190615(12*n + 5). - Michael Somos, Nov 15 2015