cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A128608 a(n)=sigma(A128607(n)), where A128607(n) is the sequence of perfect (or pure) powers such that a(n) is a perfect power.

Original entry on oeis.org

1, 121, 400, 961, 116281, 2989441, 7958041, 361722361, 962922961, 1902442689, 1891467081, 5168743489, 4755619521, 5215583961, 6835486329, 7496615889, 13884144561, 13884144561, 35018011161, 120776405841, 120776405841, 230195565369, 253358202409, 171651947481
Offset: 1

Views

Author

Walter Kehowski, Mar 20 2007

Keywords

Comments

Denote by egcd(n) the gcd of all the powers in the prime factorization of n. In our context, a square has egcd=2, a cube has egcd=3 and so on. The only elements n in the sequence for which egcd(n)>2 are 81 and 343. Are there any others? Conjecture I: egcd(A128607(n))=2 for all n>2. Let a(n)=sigma(A128607(n)). Note that A128607(11)=1857437604=(2^2)*(3^2)*(11^2)*(653^2) has a(11)=5168743489=(7^3)*(13^3)*(19^3). Any other cubes or higher egcd's in this sequence? Conjecture II: egcd(a(n))=2 for all n ne 11.

Examples

			a(2) = sigma(A128607(2)) = sigma(343) = 1+7+7^2+7^3 = 400 = 2^4*5^2.
		

Crossrefs

Programs

  • Maple
    N:= 10^13: # to get all terms where A128607(n) <= N
    pows:= {1, seq(seq(n^k, n = 2 .. floor(N^(1/k))), k = 2 .. floor(log[2](N)))}:
    filter:= proc(n) local s, F;
       s:= numtheory:-sigma(n);
       F:= map(t -> t[2], ifactors(s)[2]);
       igcd(op(F)) >= 2
    end proc:
    filter(1):= true: A128608:= sort(convert((filter, pows), list)):
    map(numtheory:-sigma,A128608); # Robert Israel, Feb 14 2016
  • Mathematica
    M = 10^13; (* to get all terms where A128607(n) <= M *)
    pows = {1, Table[Table[n^k, {n, 2, Floor[M^(1/k)]}], {k, 2, BitLength[M]-1}]} // Flatten // Union;
    okQ[n_] := Module[{s, F}, s = DivisorSigma[1, n]; F = FactorInteger[s][[All, 2]]; GCD @@ F >= 2];
    okQ[1] = True;
    DivisorSigma[1, #]& /@ Select[pows, okQ] (* Jean-François Alcover, Feb 09 2023, after Robert Israel *)

Extensions

1, 13884144561, 35018011161, 120776405841, added by Zak Seidov, Feb 14 2016
Edited by Robert Israel, Feb 14 2016