cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A082451 Sum over divisors d of n of Kronecker symbol (-60, d).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 2, 1, 2, 1, 0, 0, 2, 1, 1, 0, 1, 0, 0, 1, 2, 1, 0, 2, 0, 1, 0, 2, 0, 1, 0, 0, 0, 0, 1, 2, 2, 1, 1, 1, 2, 0, 2, 1, 0, 0, 2, 0, 0, 1, 2, 2, 0, 1, 0, 0, 0, 2, 2, 0, 0, 1, 0, 0, 1, 2, 0, 0, 2, 1, 1, 0, 2, 0, 2, 0
Offset: 1

Views

Author

Michael Somos, Apr 25 2003

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. =  q + q^2 + q^3 + q^4 + q^5 + q^6 + q^8 + q^9 + q^10 + q^12 + q^15 + q^16 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := If[ n < 1, 0, DivisorSum[n, KroneckerSymbol[-60, #] &]]; (* Michael Somos, Nov 15 2015 *)
    a[ n_] := If[ n < 1, 0, Times @@ (Which[# < 7, 1, KroneckerSymbol[-60, #] == 1, #2 + 1, True, 1 - Mod[#2, 2]] & @@@ FactorInteger[n])]; (* Michael Somos, Nov 15 2015 *)
    a[ n_] := SeriesCoefficient[ q QPochhammer[ q^3] QPochhammer[ q^5] QPochhammer[ -q, q] QPochhammer[ -q^15, q^15], {q, 0, n}]; (* Michael Somos, Nov 15 2015 *)
  • PARI
    {a(n) = if( n<1, 0, sumdiv(n, d, kronecker(-60, d)))};
    
  • PARI
    {a(n) = if( n<1, 0, direuler(p=2, n, 1 / ((1 - X) * (1 - kronecker(-60, p)*X))[n]))};
    
  • PARI
    {a(n) = my(A); if( n<1, 0, n--; A = x * O(x^n); polcoeff( eta(x^2 + A) * eta(x^3 + A) * eta(x^5 + A) * eta(x^30 + A) / (eta(x + A) * eta(x^15 + A)), n))};

Formula

Expansion of q * f(-q^3) * f(-q^5) / (chi(-q) * chi(-q^15)) in powers of q where f(), chi() are Ramanujan theta functions.
Expansion of eta(q^2) * eta(q^3) * eta(q^5) * eta(q^30) / (eta(q) * eta(q^15)) in powers of q.
Euler transform of period 30 sequence [ 1, 0, 0, 0, 0, -1, 1, 0, 0, -1, 1, -1, 1, 0, 0, 0, 1, -1, 1, -1, 0, 0, 1, -1, 0, 0, 0, 0, 1, -2, ...].
a(n) is multiplicative with a(2^e) = a(3^e) = a(5^e) = 1, a(p^e) = e+1 if p == 1, 2, 4, 8 (mod 15), a(p^e) = (1 + (-1)^e)/2 if p == 7, 11, 13, 14 (mod 15).
G.f.: x * Product_{k>0} (1 + x^k) * (1 - x^(3*k)) * (1 - x^(5*k)) * (1 + x^(15*k)).
a(n) = A128616(n) + A128617(n). - Michael Somos, Nov 15 2015
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Pi/sqrt(15) = 0.811155... . - Amiram Eldar, Nov 16 2023
Showing 1-1 of 1 results.