cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A128621 A127648 * A128174 as an infinite lower triangular matrix.

Original entry on oeis.org

1, 0, 2, 3, 0, 3, 0, 4, 0, 4, 5, 0, 5, 0, 5, 0, 6, 0, 6, 0, 6, 7, 0, 7, 0, 7, 0, 7, 0, 8, 0, 8, 0, 8, 0, 8, 9, 0, 9, 0, 9, 0, 9, 0, 9, 0, 10, 0, 10, 0, 10, 0, 10, 0, 10, 11, 0, 11, 0, 11, 0, 11, 0, 11, 0, 11, 0, 12, 0, 12, 0, 12, 0, 12, 0, 12, 0, 12, 13, 0, 13, 0, 13, 0, 13, 0, 13, 0, 13, 0, 13
Offset: 1

Views

Author

Gary W. Adamson, Mar 14 2007

Keywords

Examples

			First few rows of the triangle:
  1;
  0, 2;
  3, 0, 3;
  0, 4, 0, 4;
  5, 0, 5, 0, 5;
  ...
		

Crossrefs

Cf. A093005 (row sums).

Programs

  • Magma
    [n*(1+(-1)^(n+k))/2: k in [1..n], n in [1..15]]; // G. C. Greubel, Mar 13 2024
    
  • Mathematica
    Table[n*(1+(-1)^(n+k))/2, {n,15}, {k,n}]//Flatten (* G. C. Greubel, Mar 13 2024 *)
  • SageMath
    flatten([[n*(1+(-1)^(n+k))//2 for k in range(1,n+1)] for n in range(1,16)]) # G. C. Greubel, Mar 13 2024

Formula

Odd rows: n terms of n, 0, n, ...; even rows, n terms of 0, n, 0, ...
T(n,k) = n if n+k even, T(n,k) = 0 if n+k odd.
Sum_{k=1..n} T(n, k) = A093005(n) (row sums).
From G. C. Greubel, Mar 13 2024: (Start)
T(n, k) = n*(1 + (-1)^(n+k))/2.
Sum_{k=1..n} (-1)^(k-1)*T(n, k) = (-1)^(n+1)*A093005(n).
Sum_{k=1..floor((n+1)/2)} T(n-k+1, k) = (1/2)*(1-(-1)^n) * A000326(floor((n+1)/2)).
Sum_{k=1..floor((n+1)/2)} (-1)^(k-1)*T(n-k+1, k) = (1/2)*(1 - (-1)^n)*A123684(floor((n+1)/2)). (End)

Extensions

More terms added by G. C. Greubel, Mar 13 2024