A128621 A127648 * A128174 as an infinite lower triangular matrix.
1, 0, 2, 3, 0, 3, 0, 4, 0, 4, 5, 0, 5, 0, 5, 0, 6, 0, 6, 0, 6, 7, 0, 7, 0, 7, 0, 7, 0, 8, 0, 8, 0, 8, 0, 8, 9, 0, 9, 0, 9, 0, 9, 0, 9, 0, 10, 0, 10, 0, 10, 0, 10, 0, 10, 11, 0, 11, 0, 11, 0, 11, 0, 11, 0, 11, 0, 12, 0, 12, 0, 12, 0, 12, 0, 12, 0, 12, 13, 0, 13, 0, 13, 0, 13, 0, 13, 0, 13, 0, 13
Offset: 1
Examples
First few rows of the triangle: 1; 0, 2; 3, 0, 3; 0, 4, 0, 4; 5, 0, 5, 0, 5; ...
Links
- G. C. Greubel, Rows n = 1..100 of the triangle, flattened
Programs
-
Magma
[n*(1+(-1)^(n+k))/2: k in [1..n], n in [1..15]]; // G. C. Greubel, Mar 13 2024
-
Mathematica
Table[n*(1+(-1)^(n+k))/2, {n,15}, {k,n}]//Flatten (* G. C. Greubel, Mar 13 2024 *)
-
SageMath
flatten([[n*(1+(-1)^(n+k))//2 for k in range(1,n+1)] for n in range(1,16)]) # G. C. Greubel, Mar 13 2024
Formula
Odd rows: n terms of n, 0, n, ...; even rows, n terms of 0, n, 0, ...
T(n,k) = n if n+k even, T(n,k) = 0 if n+k odd.
Sum_{k=1..n} T(n, k) = A093005(n) (row sums).
From G. C. Greubel, Mar 13 2024: (Start)
T(n, k) = n*(1 + (-1)^(n+k))/2.
Sum_{k=1..n} (-1)^(k-1)*T(n, k) = (-1)^(n+1)*A093005(n).
Sum_{k=1..floor((n+1)/2)} T(n-k+1, k) = (1/2)*(1-(-1)^n) * A000326(floor((n+1)/2)).
Sum_{k=1..floor((n+1)/2)} (-1)^(k-1)*T(n-k+1, k) = (1/2)*(1 - (-1)^n)*A123684(floor((n+1)/2)). (End)
Extensions
More terms added by G. C. Greubel, Mar 13 2024