A128624 Row sums of A128623.
1, 4, 12, 24, 45, 72, 112, 160, 225, 300, 396, 504, 637, 784, 960, 1152, 1377, 1620, 1900, 2200, 2541, 2904, 3312, 3744, 4225, 4732, 5292, 5880, 6525, 7200, 7936, 8704, 9537, 10404, 11340, 12312, 13357, 14440, 15600, 16800, 18081, 19404, 20812, 22264, 23805
Offset: 1
Links
- Colin Barker, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (2,1,-4,1,2,-1).
Programs
-
Magma
[n*((n+1)^2-1+(n mod 2))/4: n in [1..50]]; // G. C. Greubel, Mar 12 2024
-
Mathematica
Table[n*(n^2 +2*n +Mod[n,2])/4, {n,50}] (* G. C. Greubel, Mar 12 2024 *)
-
PARI
Vec(x*(1+2*x+3*x^2)/((1-x)^4*(1+x)^2) + O(x^100)) \\ Colin Barker, Jan 31 2016
-
SageMath
[n*((n+1)^2-1+(n%2))//4 for n in range(1,51)] # G. C. Greubel, Mar 12 2024
Formula
G.f.: x*(1+2*x+3*x^2) / ((1+x)^2*(1-x)^4). - R. J. Mathar, Jun 27 2012
From Colin Barker, Jan 31 2016: (Start)
a(n) = n*(2*n^2 + 4*n + 1 - (-1)^n)/8.
a(n) = n^2*(n + 2)/4 for n even.
a(n) = n*(n^2 + 2*n + 1)/4 for n odd. (End)
From G. C. Greubel, Mar 12 2024: (Start)
a(n) = Sum_{k=0..floor((n-1)/2)} A094728(n, k).
E.g.f.: (1/8)*x*(exp(-x) + (7 + 10*x + 2*x^2)*exp(x)). (End)
Extensions
Incorrect formula removed by R. J. Mathar, Jun 27 2012
Comments