cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A128624 Row sums of A128623.

Original entry on oeis.org

1, 4, 12, 24, 45, 72, 112, 160, 225, 300, 396, 504, 637, 784, 960, 1152, 1377, 1620, 1900, 2200, 2541, 2904, 3312, 3744, 4225, 4732, 5292, 5880, 6525, 7200, 7936, 8704, 9537, 10404, 11340, 12312, 13357, 14440, 15600, 16800, 18081, 19404, 20812, 22264, 23805
Offset: 1

Views

Author

Gary W. Adamson, Mar 14 2007

Keywords

Comments

Also the number of (w,x,y) with all terms in {0,...,n-1} and w <= R <= x, where R = max(w,x,y)-min(w,x,y), see A212959. - Clark Kimberling, Jun 10 2012

Crossrefs

Cf. A094728 (diagonal row sums).

Programs

  • Magma
    [n*((n+1)^2-1+(n mod 2))/4: n in [1..50]]; // G. C. Greubel, Mar 12 2024
    
  • Mathematica
    Table[n*(n^2 +2*n +Mod[n,2])/4, {n,50}] (* G. C. Greubel, Mar 12 2024 *)
  • PARI
    Vec(x*(1+2*x+3*x^2)/((1-x)^4*(1+x)^2) + O(x^100)) \\ Colin Barker, Jan 31 2016
    
  • SageMath
    [n*((n+1)^2-1+(n%2))//4 for n in range(1,51)] # G. C. Greubel, Mar 12 2024

Formula

G.f.: x*(1+2*x+3*x^2) / ((1+x)^2*(1-x)^4). - R. J. Mathar, Jun 27 2012
From Colin Barker, Jan 31 2016: (Start)
a(n) = n*(2*n^2 + 4*n + 1 - (-1)^n)/8.
a(n) = n^2*(n + 2)/4 for n even.
a(n) = n*(n^2 + 2*n + 1)/4 for n odd. (End)
From G. C. Greubel, Mar 12 2024: (Start)
a(n) = Sum_{k=0..floor((n-1)/2)} A094728(n, k).
E.g.f.: (1/8)*x*(exp(-x) + (7 + 10*x + 2*x^2)*exp(x)). (End)

Extensions

Incorrect formula removed by R. J. Mathar, Jun 27 2012