cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A207636 Triangle of coefficients of polynomials v(n,x) jointly generated with A207635; see Formula section.

Original entry on oeis.org

1, 3, 2, 6, 7, 2, 12, 20, 11, 2, 24, 52, 42, 15, 2, 48, 128, 136, 72, 19, 2, 96, 304, 400, 280, 110, 23, 2, 192, 704, 1104, 960, 500, 156, 27, 2, 384, 1600, 2912, 3024, 1960, 812, 210, 31, 2, 768, 3584, 7424, 8960, 6944, 3584, 1232, 272, 35, 2, 1536, 7936
Offset: 1

Views

Author

Clark Kimberling, Feb 24 2012

Keywords

Comments

As triangle T(n,k) with 0 <= k <= n, it is (3, -1, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (2, -1, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938. - Philippe Deléham, Feb 26 2012

Examples

			First five rows:
   1;
   3,  2;
   6,  7,  2;
  12, 20, 11,  2;
  24, 52, 42, 15,  2;
		

Crossrefs

Programs

  • Mathematica
    u[1, x_] := 1; v[1, x_] := 1; z = 16;
    u[n_, x_] := u[n - 1, x] + v[n - 1, x]
    v[n_, x_] := (x + 1)*u[n - 1, x] + (x + 1)*v[n - 1, x] + 1
    Table[Factor[u[n, x]], {n, 1, z}]
    Table[Factor[v[n, x]], {n, 1, z}]
    cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
    TableForm[cu]
    Flatten[%]  (* A207635 *)
    Table[Expand[v[n, x]], {n, 1, z}]
    cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
    TableForm[cv]
    Flatten[%]  (* A207636 *)

Formula

u(n,x) = u(n-1,x) + v(n-1,x),
v(n,x) = (x+1)*u(n-1,x) + (x+1)*v(n-1,x) + 1,
where u(1,x)=1, v(1,x)=1.
From Philippe Deléham, Feb 26 2012: (Start)
As triangle T(n,k), 0 <= k <= n:
T(n,k) = 2*T(n-1,k) + T(n-1,k-1) with T(0,0) = 1, T(1,0) = 3, T(1,1) = 2 and T(n,k) = 0 if k < 0 or if k > n.
G.f.: (1+x+y*x)/(1-2*x-y*x).
Sum_{k=0..n} T(n,k)*x^k = A003945(n), |A084244(n)|, A189274(n) for x = 0, 1, 3 respectively.
Sum_{k=0..n} T(n,k)*x^(n-k) = A040000(n), |A084244(n)|, A128625(n) for x = 0, 1, 2 respectively. (End)

A294090 Base-10 complementary numbers: n equals the product of the 10's complement of its digits.

Original entry on oeis.org

5, 18, 35, 50, 180, 315, 350, 500, 1800, 3150, 3500, 5000, 18000, 31500, 35000, 50000, 180000, 315000, 350000, 500000, 1800000, 3150000, 3500000, 5000000, 18000000, 31500000, 35000000, 50000000, 180000000, 315000000, 350000000, 500000000, 1800000000
Offset: 1

Views

Author

M. F. Hasler, Feb 09 2018

Keywords

Comments

The only primitive terms of the sequence, i.e., not equal to 10 times a smaller term, are 5, 18, 35 and 315.
For base 2, 3, 4 and 5, the corresponding sequences are less interesting: b = 2 yields powers of 2, A000079; b = 3 yields 4 times powers of 3, A003946 \ {1}; b = 4 yields {2, 6}*{4^k, k>=0} = A122756 = 2*A084221; b = 5 yields 8*{5^k, k>=0} = A128625 \ {1}.
See A298976 for base-6 complementary numbers. Base 7 yields {12, 120}*{7^k, k>=0}, cf. A298977. The linked web page (in French) gives also examples for base-100 complementary numbers, e.g., 198 = (100 - 1)*(100 - 98), 1680 = (100 - 16)*(100 - 80), ..., and for base-1000 complementary numbers.

Examples

			5 = (10-5), therefore 5 is in the sequence.
18 = (10-1)*(10-8), therefore 18 is in the sequence.
35 = (10-3)*(10-5), therefore 35 is in the sequence.
315 = (10-3)*(10-1)*(10-5), therefore 315 is in the sequence.
If x is in the sequence, then 10*x = concat(x,0) = x*(10-0) is in the sequence.
		

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{0,0,0,10},{5,18,35,50,180,315},40] (* Harvey P. Dale, Mar 02 2024 *)
  • PARI
    is(n,b=10)={n==prod(i=1,#n=digits(n,b),b-n[i])}
    
  • PARI
    a(n)=if(n>6,a((n-3)%4+3)*10^((n-3)\4),[5,18,35,50,180,315][n])
    
  • PARI
    Vec(x*(5 + 18*x + 35*x^2 + 50*x^3 + 130*x^4 + 135*x^5) / (1 - 10*x^4) + O(x^60)) \\ Colin Barker, Feb 09 2018

Formula

a(n+4) = 10 a(n) for all n >= 3.
G.f.: x*(5 + 18*x + 35*x^2 + 50*x^3 + 130*x^4 + 135*x^5) / (1 - 10*x^4). - Colin Barker, Feb 09 2018

A270567 Expansion of g.f. (1+4*x)/(1-5*x).

Original entry on oeis.org

1, 9, 45, 225, 1125, 5625, 28125, 140625, 703125, 3515625, 17578125, 87890625, 439453125, 2197265625, 10986328125, 54931640625, 274658203125, 1373291015625, 6866455078125, 34332275390625, 171661376953125, 858306884765625, 4291534423828125, 21457672119140625, 107288360595703125
Offset: 0

Views

Author

Colin Barker, Mar 19 2016

Keywords

Comments

Partial sums are 1, 10, 55, 280, 1405, 7030, ...
Apparently a duplicate of A189274. - R. J. Mathar, May 13 2016

Crossrefs

Cf. A000351 (powers of 5), A128625 (1+3*x)/(1-5*x), A189274.

Programs

  • Mathematica
    CoefficientList[Series[(1 + 4 x)/(1 - 5 x), {x, 0, 23}], x] (* Michael De Vlieger, Mar 19 2016 *)
  • PARI
    Vec((1+4*x)/(1-5*x) + O(x^30))

Formula

G.f.: (1+4*x)/(1-5*x).
a(n) = 5*a(n-1) for n>1.
a(n) = 9*5^(n-1) for n>0.
E.g.f.: (9*exp(5*x) - 4)/5. - Elmo R. Oliveira, Mar 25 2025
Showing 1-3 of 3 results.