A128638 Expansion of q * (psi(q^3)^3 / psi(q)) / (phi(-q)^3 / phi(-q^3)) in powers of q where phi(), psi() are Ramanujan theta functions.
1, 5, 19, 61, 174, 455, 1112, 2573, 5689, 12102, 24900, 49759, 96902, 184408, 343722, 628717, 1130418, 2000669, 3489788, 6005910, 10207688, 17147892, 28494120, 46865519, 76342903, 123236446, 197233723, 313106264, 493231830, 771301986, 1197743552, 1847606573
Offset: 1
Keywords
Examples
G.f. = q + 5*q^2 + 19*q^3 + 61*q^4 + 174*q^5 + 455*q^6 + 1112*q^7 + ...
Links
- G. C. Greubel, Table of n, a(n) for n = 1..1000
- Kevin Acres, David Broadhurst, Eta quotients and Rademacher sums, arXiv:1810.07478 [math.NT], 2018. See Table 1 p. 10.
- Michael Somos, Introduction to Ramanujan theta functions
- Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
Programs
-
Mathematica
a[ n_] := SeriesCoefficient[ (QPochhammer[ q^6] / QPochhammer[ q])^5 (QPochhammer[ q^2] / QPochhammer[ q^3]), {q, 0, n}]; (* Michael Somos, Jun 08 2015 *) nmax = 40; Rest[CoefficientList[Series[x * Product[((1 - x^(6*k)) / (1-x^k))^5 * ((1 - x^(2*k)) / (1 - x^(3*k))), {k, 1, nmax}], {x, 0, nmax}], x]] (* Vaclav Kotesovec, Sep 08 2015 *)
-
PARI
{a(n) = my(A); if( n<1, 0, n--; A = x * O(x^n); polcoeff( (eta(x^6 + A) / eta(x + A))^5 * eta(x^2 + A) / eta(x^3 + A), n))};
Formula
Expansion of (1/3) * (c(q^2)^2 / c(q)) / (b(q)^2 / b(q^2)) in powers of q where b(), c() are cubic AGM theta functions.
Expansion of (eta(q^6) / eta(q))^5 * eta(q^2) / eta(q^3) in powers of q.
Euler transform of period 6 sequence [ 5, 4, 6, 4, 5, 0, ...].
G.f. A(x) satisfies 0 = f(A(x), A(x^2)) where f(u, v) = v * (1 + 8*u) * (1 + 9*v) - (u-v)^2.
G.f. is a period 1 Fourier series which satisfies f(-1 / (6 t)) = (1/72) g(t) where q = exp(2 Pi i t) and g() is the g.f. for A128632.
G.f.: x * Product_{k>0} ((1 - x^(6*k)) / (1-x^k))^5 * ((1 - x^(2*k)) / (1 - x^(3*k))).
a(n) ~ exp(2*Pi*sqrt(2*n/3)) / (72 * 2^(3/4) * 3^(1/4) * n^(3/4)). - Vaclav Kotesovec, Sep 08 2015
Extensions
Edited by N. J. A. Sloane, Apr 01 2008
Comments