cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A128638 Expansion of q * (psi(q^3)^3 / psi(q)) / (phi(-q)^3 / phi(-q^3)) in powers of q where phi(), psi() are Ramanujan theta functions.

Original entry on oeis.org

1, 5, 19, 61, 174, 455, 1112, 2573, 5689, 12102, 24900, 49759, 96902, 184408, 343722, 628717, 1130418, 2000669, 3489788, 6005910, 10207688, 17147892, 28494120, 46865519, 76342903, 123236446, 197233723, 313106264, 493231830, 771301986, 1197743552, 1847606573
Offset: 1

Views

Author

Michael Somos, Mar 16 2007

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Cubic AGM theta functions: a(q) (see A004016), b(q) (A005928), c(q) (A005882).

Examples

			G.f. = q + 5*q^2 + 19*q^3 + 61*q^4 + 174*q^5 + 455*q^6 + 1112*q^7 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ (QPochhammer[ q^6] / QPochhammer[ q])^5 (QPochhammer[ q^2] / QPochhammer[ q^3]), {q, 0, n}]; (* Michael Somos, Jun 08 2015 *)
    nmax = 40; Rest[CoefficientList[Series[x * Product[((1 - x^(6*k)) / (1-x^k))^5 * ((1 - x^(2*k)) / (1 - x^(3*k))), {k, 1, nmax}], {x, 0, nmax}], x]] (* Vaclav Kotesovec, Sep 08 2015 *)
  • PARI
    {a(n) = my(A); if( n<1, 0, n--; A = x * O(x^n); polcoeff( (eta(x^6 + A) / eta(x + A))^5 * eta(x^2 + A) / eta(x^3 + A), n))};

Formula

Expansion of (1/3) * (c(q^2)^2 / c(q)) / (b(q)^2 / b(q^2)) in powers of q where b(), c() are cubic AGM theta functions.
Expansion of (eta(q^6) / eta(q))^5 * eta(q^2) / eta(q^3) in powers of q.
Euler transform of period 6 sequence [ 5, 4, 6, 4, 5, 0, ...].
G.f. A(x) satisfies 0 = f(A(x), A(x^2)) where f(u, v) = v * (1 + 8*u) * (1 + 9*v) - (u-v)^2.
G.f. is a period 1 Fourier series which satisfies f(-1 / (6 t)) = (1/72) g(t) where q = exp(2 Pi i t) and g() is the g.f. for A128632.
G.f.: x * Product_{k>0} ((1 - x^(6*k)) / (1-x^k))^5 * ((1 - x^(2*k)) / (1 - x^(3*k))).
8 * a(n) = A128639(n) unless n = 0. Convolution inverse of A128632.
a(n) ~ exp(2*Pi*sqrt(2*n/3)) / (72 * 2^(3/4) * 3^(1/4) * n^(3/4)). - Vaclav Kotesovec, Sep 08 2015

Extensions

Edited by N. J. A. Sloane, Apr 01 2008