A128710 Triangle read by rows: T(n,k) = (k+2)*binomial(n,k) (0 <= k <= n).
2, 2, 3, 2, 6, 4, 2, 9, 12, 5, 2, 12, 24, 20, 6, 2, 15, 40, 50, 30, 7, 2, 18, 60, 100, 90, 42, 8, 2, 21, 84, 175, 210, 147, 56, 9, 2, 24, 112, 280, 420, 392, 224, 72, 10, 2, 27, 144, 420, 756, 882, 672, 324, 90, 11, 2, 30, 180, 600, 1260, 1764, 1680, 1080, 450, 110, 12, 2, 33
Offset: 0
Examples
Triangle starts: 2; 2, 3; 2, 6, 4; 2, 9, 12, 5; 2, 12, 24, 20, 6;
References
- D. Hök, Parvisa mönster i permutationer [Swedish], (2007).
Programs
-
Maple
T:=(n,k)->(k+2)*binomial(n,k): for n from 0 to 11 do seq(T(n,k),k=0..n) od; # yields sequence in triangular form. - Emeric Deutsch, Apr 02 2007
-
Mathematica
T[n_,k_]:=(k+2)*Binomial[n,k];Table[T[n,k],{n,0,10},{k,0,n}]//Flatten (* James C. McMahon, Jan 11 2025 *)
Formula
G.f.: (2 - t*(2+x))/(1 - t*(1+x))^2 = 2 + (2+3*x)*t + (2+6*x+4*x^2)*t^2 + .... - Peter Bala, Mar 05 2013
Row n is the vector of polynomial coefficients of (2 + (n+2)*x)*(1+x)^(n-1). - Peter Bala, Mar 05 2013
Extensions
Edited by Emeric Deutsch, Apr 02 2007
Comments