A128721 Number of UUU's in all skew Dyck paths of semilength n.
0, 0, 0, 4, 28, 157, 820, 4155, 20742, 102725, 506504, 2491230, 12236520, 60063399, 294748884, 1446436680, 7099442700, 34855583275, 171187439920, 841084246980, 4134129246180, 20328683526575, 100003531112300, 492153054177155
Offset: 0
Keywords
Examples
a(3)=4 because each of the paths UUUDDD, UUUDLD, UUUDDL and UUUDLL contains one UUU, while the other six paths of semilength 3 contain no UUU's.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..300
- E. Deutsch, E. Munarini, S. Rinaldi, Skew Dyck paths, J. Stat. Plann. Infer. 140 (8) (2010) 2191-2203
Crossrefs
Cf. A128719.
Programs
-
Maple
G:=(1-5*z+4*z^2-2*z^3-(1-2*z)*sqrt(1-6*z+5*z^2))/2/z/sqrt(1-6*z+5*z^2): Gser:=series(G,z=0,28): seq(coeff(Gser,z,n),n=0..25);
-
Mathematica
CoefficientList[Series[(2*x*(1-x-Sqrt[1-6*x+5*x^2])/(2*x)-(1-x-Sqrt[1-6*x+5*x^2])/(2*x)+1-x+x^2)/(2*x*(1-x-Sqrt[1-6*x+5*x^2])/(2*x)+x-1), {x, 0, 20}], x] (* Vaclav Kotesovec, Nov 19 2012 *)
Formula
a(n) = Sum_{k=0..n-2} k*A128719(n,k) (n >= 2).
G.f.: (2zg - g + 1 - z + z^2)/(2zg + z - 1), where g = 1 + zg^2 + z(g-1) = (1 - z - sqrt(1 - 6z + 5z^2))/(2z).
Recurrence: 2*(n+1)*(121*n-348)*a(n) = (1663*n^2 - 4620*n + 1392)*a(n-1) - (2476*n^2 - 11133*n + 11787)*a(n-2) + 5*(n-4)*(211*n-537)*a(n-3). - Vaclav Kotesovec, Nov 19 2012
a(n) ~ 9*5^(n-3/2)/(2*sqrt(Pi*n)). - Vaclav Kotesovec, Nov 19 2012
Comments