A128748 Number of peaks at height >1 in all skew Dyck paths of semilength n.
0, 2, 11, 54, 260, 1247, 5982, 28741, 138364, 667488, 3226503, 15625476, 75802578, 368316888, 1792203759, 8732274312, 42598366616, 208036945958, 1017023261529, 4976560342522, 24372741339016, 119461561111023, 585970198529224
Offset: 1
Keywords
Examples
a(2)=2 because in the paths UDUD, U(UD)D and U(UD)L we have altogether 2 peaks at height >1 (shown between parentheses).
Links
- G. C. Greubel, Table of n, a(n) for n = 1..1000
- E. Deutsch, E. Munarini, S. Rinaldi, Skew Dyck paths, J. Stat. Plann. Infer. 140 (8) (2010) 2191-2203
Crossrefs
Cf. A128747.
Programs
-
Maple
G:=(1-4*z+2*z^2+z^3-(1-z+z^2)*sqrt(1-6*z+5*z^2))/2/z/(2-z)/sqrt(1-6*z+5*z^2): Gser:=series(G,z=0,30): seq(coeff(Gser,z,n),n=1..27);
-
Mathematica
Rest[CoefficientList[Series[(1-4*x+2*x^2+x^3-(1-x+x^2)*Sqrt[1-6*x+5*x^2]) /2/x/(2-x)/Sqrt[1-6*x+5*x^2], {x, 0, 20}], x]] (* Vaclav Kotesovec, Mar 20 2014 *)
-
PARI
z='z+O('z^50); concat([0], Vec((1-4*z+2*z^2+z^3-(1-z+z^2)*sqrt(1-6*z+5*z^2))/(2*z*(2-z)*sqrt(1-6*z+5*z^2)))) \\ G. C. Greubel, Mar 20 2017
Formula
a(n) = Sum_{k=0..n-1} A128747(n,k).
G.f.: (1-4*z+2*z^2+z^3-(1-z+z^2)*sqrt(1-6*z+5*z^2))/(2*z*(2-z)*sqrt(1-6*z+5*z^2)).
a(n) ~ 5^(n-1/2)/sqrt(Pi*n). - Vaclav Kotesovec, Mar 20 2014
D-finite with recurrence 2*(n+2)*a(n) +(-19*n-18)*a(n-1) +(53*n-12)*a(n-2) +2*(-20*n+19)*a(n-3) +(-n+26)*a(n-4) +5*(n-4)*a(n-5)=0. - R. J. Mathar, Jun 17 2016
Comments