A128750 Number of skew Dyck paths of semilength n having no ascents of length 1.
1, 0, 2, 4, 14, 44, 150, 520, 1850, 6696, 24602, 91500, 343846, 1303572, 4979822, 19150352, 74075890, 288022160, 1125076210, 4413061972, 17375007294, 68641377980, 272014578822, 1081009104664, 4307221752874, 17203123381304
Offset: 0
Keywords
Examples
a(3)=4 because we have UUUDDD, UUUDLD, UUUDDL and UUUDLL.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
- E. Deutsch, E. Munarini, S. Rinaldi, Skew Dyck paths, J. Stat. Plann. Infer. 140 (8) (2010) 2191-2203.
Crossrefs
Cf. A128749.
Programs
-
Maple
G:=(1-z^2-sqrt((1-z^2)*(1-4*z-z^2)))/2/z/(1+z): Gser:=series(G,z=0,35): seq(coeff(Gser,z,n),n=0..30);
-
Mathematica
CoefficientList[Series[(1-x^2-Sqrt[(1-x^2)*(1-4*x-x^2)])/2/x/(1+x), {x, 0, 20}], x] (* Vaclav Kotesovec, Feb 08 2014 *)
Formula
a(n) = A128749(n,0).
G.f.: G = G(z) satisfies z(1 + z)G^2 - (1 - z^2)G + 1 - z = 0.
G.f.: 1/(1+x-x/(1-x-x/(1+x-x/(1-x-x/(1+x-x/(1-... (continued fraction). - Paul Barry, Feb 11 2009
From Paul Barry, Feb 11 2009: (Start)
G.f.: (1/(1+x))c(x/(1-x^2)) where c(x) is the g.f. of A000108;
G.f.: 1/(1-2x^2/(1-2x-x^2/(1-2x-2x^2/(1-x-2x^2/(1-2x-x^2/(1-2x-2x^2/(1-x-2x^2/(1-.... (continued fraction);
a(n) = Sum_{k=0..n} (-1)^(n-k)*binomial(floor((n+k)/2),k)*A000108(k).
(End)
Conjecture: (n+1)*a(n) +(-4*n+3)*a(n-1) +(-2*n-1)*a(n-2) +(4*n-11)*a(n-3) +(n-4)*a(n-4)=0. - R. J. Mathar, Nov 15 2012
a(n) ~ sqrt(5+3*sqrt(5)) * (2+sqrt(5))^n / (4 * sqrt(Pi) * n^(3/2)). - Vaclav Kotesovec, Feb 08 2014
Comments