cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A105864 Expansion of (1/(1-x^2))*c(x/(1-x^2)), where c(x) is the g.f. of A000108.

Original entry on oeis.org

1, 1, 3, 7, 21, 65, 215, 735, 2585, 9281, 33883, 125383, 469229, 1772801, 6752623, 25902975, 99978865, 388001025, 1513077235, 5926139207, 23301146501, 91942524481, 363957103303, 1444966207967, 5752187960841, 22955311342145
Offset: 0

Views

Author

Paul Barry, Apr 23 2005

Keywords

Comments

Binomial transform is A059279.
Hankel transform is A134751. - Paul Barry, Oct 07 2008
The radius of convergence r of the g.f. A(x) satisfies: r = (1-r^2)/4 = lim_{n->inf} a(n)/a(n+1) = sqrt(5) - 2 = 0.2360679... with A(r) = 1/(2*r) = (sqrt(5) + 2)/2 = 2.1180339... - Paul D. Hanna, Sep 06 2011

Crossrefs

Partial sums of A128750.

Programs

  • Mathematica
    a[0] = a[1] = 1; a[2] = 3; a[3] = 7; a[n_] := a[n] = (-((n-3)*a[n-4]) - 2*(2*n-3)*a[n-3] + 2*(n-1)*a[n-2] + 2*(2*n-1)*a[n-1])/(n+1); Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Sep 09 2017, using "FindSequenceFunction" *)
  • PARI
    {a(n)=polcoeff((1-sqrt(1-4*x/(1-x^2 +O(x^(n+2)))))/(2*x), n)} /* Paul D. Hanna */

Formula

G.f.: (1 - sqrt((1 - 4*x - x^2)/(1 - x^2)))/(2*x).
a(n) = Sum_{k=0..floor(n/2)} binomial(n-k, k) * A000108(n-2*k).
G.f. satisfies: A(x) = 1/(1-x^2) + x*A(x)^2. - Paul D. Hanna, Sep 06 2011
Conjecture: (n+1)*a(n) + 2*(1-2*n)*a(n-1) + 2*(1-n)*a(n-2) + 2*(2*n-3)*a(n-3) + (n-3)*a(n-4) = 0. - R. J. Mathar, Nov 15 2011
G.f.: (1-1/G(0))/(2*x), where G(k) = 1 + 4*x*(4*k+1)/( (1-x^2)*(4*k+2) - x*(1-x^2)*(4*k+2)*(4*k+3)/(x*(4*k+3) + (1-x^2)*(k+1)/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Jun 26 2013
a(n) ~ 5^(1/4)*(2+sqrt(5))^(n+1)/(4*sqrt(2*Pi)*n^(3/2)). - Vaclav Kotesovec, Sep 16 2013
G.f.: 1/G(x), where G(x) = 1 - x^2 - (x - x^3)/ G(x) (continued fraction). - Nikolaos Pantelidis, Jan 08 2023

A128749 Triangle read by rows: T(n,k) is the number of skew Dyck paths of semilength n having k ascents of length 1.

Original entry on oeis.org

1, 0, 1, 2, 0, 1, 4, 5, 0, 1, 14, 12, 9, 0, 1, 44, 53, 25, 14, 0, 1, 150, 196, 132, 44, 20, 0, 1, 520, 777, 555, 269, 70, 27, 0, 1, 1850, 3064, 2486, 1260, 485, 104, 35, 0, 1, 6696, 12233, 10902, 6264, 2496, 804, 147, 44, 0, 1, 24602, 49096, 47955, 30108, 13600
Offset: 0

Views

Author

Emeric Deutsch, Mar 31 2007

Keywords

Comments

A skew Dyck path is a path in the first quadrant which begins at the origin, ends on the x-axis, consists of steps U=(1,1)(up), D=(1,-1)(down) and L=(-1,-1)(left) so that up and left steps do not overlap. The length of a path is defined to be the number of its steps. An ascent in a path is a maximal sequence of consecutive U steps.
Row sums yield A002212.

Examples

			T(3,1)=5 because we have (U)DUUDD, (U)DUUDL, UUDD(U)D, UUD(U)DD and UUD(U)DL (the ascents of length 1 are shown between parentheses).
Triangle starts:
   1;
   0,  1;
   2,  0,  1;
   4,  5,  0,  1;
  14, 12,  9,  0,  1;
  44, 53, 25, 14,  0,  1;
		

Crossrefs

Programs

  • Maple
    eq:=z*(1+z-t*z)*G^2-(1-t*z+t*z^2-z^2)*G+1-z=0: G:=RootOf(eq,G): Gser:=simplify(series(G,z=0,15)): for n from 0 to 11 do P[n]:=sort(coeff(Gser,z,n)) od: for n from 0 to 11 do seq(coeff(P[n],t,j),j=0..n) od; # yields sequence in triangular form

Formula

T(n,0) = A128750(n).
Sum_{k=0..n} k*T(n,k) = A085362(n-1).
G.f.: G = G(t,z) satisfies z(1 + z - tz)G^2 - (1 - tz + tz^2 - z^2)G + 1 - z = 0.

A179532 a(n) = 2^ceiling(n*(n+1)/3).

Original entry on oeis.org

1, 2, 4, 16, 128, 1024, 16384, 524288, 16777216, 1073741824, 137438953472, 17592186044416, 4503599627370496, 2305843009213693952, 1180591620717411303424, 1208925819614629174706176, 2475880078570760549798248448
Offset: 0

Views

Author

Paul Barry, Jan 08 2011

Keywords

Comments

Hankel transform of A128750. Satisfies (4,0) Somos-4 recurrence 4*a(n-1)*a(n-3)/a(n-4) = a(n),n>3.

Programs

  • Magma
    [2^Ceiling((n(n+1))/3): n in [0..20]]; // G. C. Greubel, Aug 14 2018
  • Mathematica
    Table[2^Ceiling[(n(n+1))/3],{n,0,20}] (* Harvey P. Dale, Sep 25 2013 *)
  • PARI
    vector(20,n,n--; 2^ceil(n*(n+1)/3)) \\ G. C. Greubel, Aug 14 2018
    

Formula

a(n) = a(-1-n) for all n in Z. - Michael Somos, Aug 14 2018
Showing 1-3 of 3 results.