cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A134751 Hankel transform of expansion of (1/(1-x^2))c(x/(1-x^2)), where c(x) is the g.f. of A000108.

Original entry on oeis.org

1, 2, 8, 32, 256, 4096, 65536, 2097152, 134217728, 8589934592, 1099511627776, 281474976710656, 72057594037927936, 36893488147419103232, 37778931862957161709568, 38685626227668133590597632
Offset: 0

Views

Author

Paul Barry, Nov 08 2007

Keywords

Comments

Hankel transform of A105864.
The sequence 1,1,2,8,... with general term 2^floor(n^2/3) is the Hankel transform of A109033. - Paul Barry, Dec 14 2008

Programs

  • Mathematica
    a[ n_] := 2^Quotient[(n+1)^2, 3]; (* Michael Somos, May 12 2022 *)
  • PARI
    {a(n) = 2^((n+1)^2\3)}; /* Michael Somos, May 12 2022 */

Formula

a(n) = 2^floor((n+1)^2/3);
a(n) = Product_{k=1..n} (5/3 - 2*cos(2*Pi*k/3)/3)^(n-k+1);
a(n) = Product_{k=1..n} A130196(k)^(n-k+1).
a(n) = 4*a(n-1)*a(n-3)/a(n-4). Somos-4 sequence associated to, e.g., y^2 = 1 - 8x + 16x^2 - 8x^3. - Paul Barry, Nov 27 2009
a(n) = a(-2-n) for all n in Z. - Michael Somos, May 12 2022

A059279 G.f. is ((1-x)/(1-2*x)) * G(x*(1-x)/(1-2*x)) where G(x) is g.f. for Catalan numbers A000108.

Original entry on oeis.org

1, 2, 6, 20, 72, 276, 1112, 4656, 20080, 88608, 398144, 1815248, 8375904, 39037120, 183493440, 868853120, 4140414720, 19841656960, 95559048960, 462268075520, 2245165391360, 10943794652160, 53519094753280, 262510076263680, 1291131867203072
Offset: 0

Views

Author

N. J. A. Sloane, Jan 24 2001

Keywords

Comments

Hankel transform is A134751. Binomial transform of A105864. [From Paul Barry, Oct 07 2008]

Programs

  • Mathematica
    CoefficientList[Series[(1 - Sqrt[1 - 4*t*(1 - t)/(1 - 2*t)])/(2*t), {t, 0, 50}], t] (* G. C. Greubel, Jan 04 2017 *)
  • PARI
    Vec((1 - sqrt(1 - 4*t*(1 - t)/(1 - 2*t)))/(2*t) + O(t^50)) \\ G. C. Greubel, Jan 04 2017

Formula

Conjecture: (n+1)*a(n) +2*(1-4*n)*a(n-1) + 4*(4*n-5)*a(n-2) +4*(5-2*n)*a(n-3)=0. - R. J. Mathar, Nov 15 2011
G.f.: (1 - sqrt(1 - 4*x*(1 - x)/(1 - 2*x)))/(2*x). - G. C. Greubel, Jan 04 2017
G.f. A(x) satisfies: A(x) = 1 + x * (1/(1 - 2*x) + A(x)^2). - Ilya Gutkovskiy, Jun 30 2020
a(n) ~ 5^(1/4) * 2^(n-1) * phi^(2*n + 3/2) / (sqrt(Pi) * n^(3/2)), where phi = A001622 = (1+sqrt(5))/2 is the golden ratio. - Vaclav Kotesovec, Jun 30 2020
Showing 1-2 of 2 results.