cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A109033 Number of permutations in S_n avoiding the patterns 1342 and 2143.

Original entry on oeis.org

1, 1, 2, 6, 22, 88, 368, 1584, 6968, 31192, 141656, 651136, 3023840, 14166496, 66876096, 317809216, 1519163456, 7299577216, 35237444736, 170812433536, 831127053696, 4057858988416, 19873611712896, 97609555091456
Offset: 0

Views

Author

Emeric Deutsch, Jun 16 2005

Keywords

Comments

Also number of permutations in S_n avoiding the patterns 3142 and 2341. Partial sums of A109034.
Hankel transform is 2^floor(n^2/3) (see A134751). - Paul Barry, Dec 15 2008

Examples

			a(4) = 22 because all permutations of 1234 qualify with the exception of 1342 and 2143.
		

Crossrefs

Cf. A109034.

Programs

  • Maple
    G:=(1-sqrt(1-8*x+16*x^2-8*x^3))/4/x/(1-x): Gser:=series(G,x=0,30): 1,seq(coeff(Gser,x^n),n=1..27);
  • Mathematica
    CoefficientList[Series[(1-Sqrt[1-8x+16x^2-8x^3])/(4x(1-x)), {x,0,30}], x] (* Harvey P. Dale, Jul 02 2011 *)

Formula

G.f.: (1-sqrt(1-8*x+16*x^2-8*x^3))/(4*x*(1-x)).
From Paul Barry, Dec 15 2008: (Start)
G.f.: (1-x)*c(2*x*(1-x)^2), where c(x) is the g.f. of A000108;
a(n) = sum{k=0..n, (-1)^(n-k)*C(2k+1,n-k)*2^k*A000108(k)}. (End)
G.f.: 1/(1-x/(1-x/(1-2x/(1-x/(1-x/(1-2x/(1-x/(1-x/(1-2x...... (continued fraction). - Paul Barry, Dec 15 2008
a(n) = Sum_{k=0..n} A091866(n,k)*2^(n-k). - Philippe Deléham, Nov 27 2009
Recurrence: (n+1)*a(n) = 3*(3*n-1)*a(n-1) - 12*(2*n-3)*a(n-2) + 12*(2*n-5) * a(n-3) - 4*(2*n-7)*a(n-4). - Vaclav Kotesovec, Oct 24 2012
a(n) ~ sqrt(5-sqrt(5))*(sqrt(5)+3)^n/(2*sqrt(2*Pi)*n^(3/2)). - Vaclav Kotesovec, Oct 24 2012. Equivalently, a(n) ~ 5^(1/4) * 2^(n-1) * phi^(2*n - 1/2) / (sqrt(Pi) * n^(3/2)), where phi = A001622 is the golden ratio. - Vaclav Kotesovec, Dec 10 2021
G.f. A(x) satisfies: A(x) = (1 - x) * (1 + 2*x*A(x)^2). - Ilya Gutkovskiy, Jun 30 2020

A059279 G.f. is ((1-x)/(1-2*x)) * G(x*(1-x)/(1-2*x)) where G(x) is g.f. for Catalan numbers A000108.

Original entry on oeis.org

1, 2, 6, 20, 72, 276, 1112, 4656, 20080, 88608, 398144, 1815248, 8375904, 39037120, 183493440, 868853120, 4140414720, 19841656960, 95559048960, 462268075520, 2245165391360, 10943794652160, 53519094753280, 262510076263680, 1291131867203072
Offset: 0

Views

Author

N. J. A. Sloane, Jan 24 2001

Keywords

Comments

Hankel transform is A134751. Binomial transform of A105864. [From Paul Barry, Oct 07 2008]

Programs

  • Mathematica
    CoefficientList[Series[(1 - Sqrt[1 - 4*t*(1 - t)/(1 - 2*t)])/(2*t), {t, 0, 50}], t] (* G. C. Greubel, Jan 04 2017 *)
  • PARI
    Vec((1 - sqrt(1 - 4*t*(1 - t)/(1 - 2*t)))/(2*t) + O(t^50)) \\ G. C. Greubel, Jan 04 2017

Formula

Conjecture: (n+1)*a(n) +2*(1-4*n)*a(n-1) + 4*(4*n-5)*a(n-2) +4*(5-2*n)*a(n-3)=0. - R. J. Mathar, Nov 15 2011
G.f.: (1 - sqrt(1 - 4*x*(1 - x)/(1 - 2*x)))/(2*x). - G. C. Greubel, Jan 04 2017
G.f. A(x) satisfies: A(x) = 1 + x * (1/(1 - 2*x) + A(x)^2). - Ilya Gutkovskiy, Jun 30 2020
a(n) ~ 5^(1/4) * 2^(n-1) * phi^(2*n + 3/2) / (sqrt(Pi) * n^(3/2)), where phi = A001622 = (1+sqrt(5))/2 is the golden ratio. - Vaclav Kotesovec, Jun 30 2020

A105864 Expansion of (1/(1-x^2))*c(x/(1-x^2)), where c(x) is the g.f. of A000108.

Original entry on oeis.org

1, 1, 3, 7, 21, 65, 215, 735, 2585, 9281, 33883, 125383, 469229, 1772801, 6752623, 25902975, 99978865, 388001025, 1513077235, 5926139207, 23301146501, 91942524481, 363957103303, 1444966207967, 5752187960841, 22955311342145
Offset: 0

Views

Author

Paul Barry, Apr 23 2005

Keywords

Comments

Binomial transform is A059279.
Hankel transform is A134751. - Paul Barry, Oct 07 2008
The radius of convergence r of the g.f. A(x) satisfies: r = (1-r^2)/4 = lim_{n->inf} a(n)/a(n+1) = sqrt(5) - 2 = 0.2360679... with A(r) = 1/(2*r) = (sqrt(5) + 2)/2 = 2.1180339... - Paul D. Hanna, Sep 06 2011

Crossrefs

Partial sums of A128750.

Programs

  • Mathematica
    a[0] = a[1] = 1; a[2] = 3; a[3] = 7; a[n_] := a[n] = (-((n-3)*a[n-4]) - 2*(2*n-3)*a[n-3] + 2*(n-1)*a[n-2] + 2*(2*n-1)*a[n-1])/(n+1); Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Sep 09 2017, using "FindSequenceFunction" *)
  • PARI
    {a(n)=polcoeff((1-sqrt(1-4*x/(1-x^2 +O(x^(n+2)))))/(2*x), n)} /* Paul D. Hanna */

Formula

G.f.: (1 - sqrt((1 - 4*x - x^2)/(1 - x^2)))/(2*x).
a(n) = Sum_{k=0..floor(n/2)} binomial(n-k, k) * A000108(n-2*k).
G.f. satisfies: A(x) = 1/(1-x^2) + x*A(x)^2. - Paul D. Hanna, Sep 06 2011
Conjecture: (n+1)*a(n) + 2*(1-2*n)*a(n-1) + 2*(1-n)*a(n-2) + 2*(2*n-3)*a(n-3) + (n-3)*a(n-4) = 0. - R. J. Mathar, Nov 15 2011
G.f.: (1-1/G(0))/(2*x), where G(k) = 1 + 4*x*(4*k+1)/( (1-x^2)*(4*k+2) - x*(1-x^2)*(4*k+2)*(4*k+3)/(x*(4*k+3) + (1-x^2)*(k+1)/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Jun 26 2013
a(n) ~ 5^(1/4)*(2+sqrt(5))^(n+1)/(4*sqrt(2*Pi)*n^(3/2)). - Vaclav Kotesovec, Sep 16 2013
G.f.: 1/G(x), where G(x) = 1 - x^2 - (x - x^3)/ G(x) (continued fraction). - Nikolaos Pantelidis, Jan 08 2023

A174016 Row sums of number triangle A174014.

Original entry on oeis.org

1, 2, 6, 16, 40, 92, 192, 352, 528, 512, -192, -2128, -3840, 5888, 69056, 299264, 917760, 2125184, 3258368, -117760, -23297536, -103321600, -295843840, -577744128, -416948224, 2490589184, 14821469184, 50063536128
Offset: 0

Views

Author

Paul Barry, Mar 05 2010

Keywords

Comments

Hankel transform is 1, 2, -8, -32, -256, 4096, ... (signed version of A134751).

Formula

G.f.: (sqrt(1-4x+4x^2+8x^3)+4x-1)/(2x(1-2x));
g.f.: 1/(1-2x/(1-x/(1+x/(1-2x/(1-x/(1+x/(1-2x/(1-... (continued fraction).
a(n) = Sum_{k=0..n} A198379(n,k)*2^k. - Philippe Deléham, Oct 29 2011
Conjecture: (n+1)*a(n) - 6*n*a(n-1) + 12*(n-1)*a(n-2) - 12*a(n-3) + 8*(7-2*n)*a(n-4) = 0. - R. J. Mathar, Nov 13 2012

Extensions

First formula corrected by Philippe Deléham, Feb 16 2012

A186341 a(n)=sum{k=0..floor(n/2), binomial(n-k,k)*A186338(k)}.

Original entry on oeis.org

1, 1, 3, 5, 15, 33, 95, 237, 667, 1765, 4943, 13505, 37967, 105837, 299675, 847253, 2417903, 6909409, 19866303, 57253165, 165728475, 480938693, 1400391247, 4087481409, 11963060527, 35089773869, 103157489499, 303856951925, 896755068783, 2651120922081, 7850714948511
Offset: 0

Views

Author

Paul Barry, Feb 18 2011

Keywords

Comments

Hankel transform is A134751.

Programs

  • Mathematica
    CoefficientList[Series[(1-x-3x^2-Sqrt[(1-3x-7x^2+19x^3+15x^4-25x^5-16x^6)/(1-x)])/(2x^2(1-x-2x^2)),{x,0,40}],x]  (* Harvey P. Dale, Mar 04 2011 *)

Formula

G.f.: 1/(1-x-2x^2/(1-2x^2/(1-x-x^2/(1-2x^2/(1-x-2x^2/(1-x^2/(1-x-2x^2/(1-... (continued fraction).
G.f.: (1-x-3x^2-sqrt((1-3x-7x^2+19x^3+15x^4-25x^5-16x^6)/(1-x)))/(2x^2(1-x-2x^2)).
Conjecture: (n+2)*a(n) +5*(-n-1)*a(n-1) +2*(-n+3)*a(n-2) +(38*n-59)*a(n-3) +(-22*n+41)*a(n-4) +4*(-22*n+81)*a(n-5) +3*(19*n-79)*a(n-6) +3*(29*n-164)*a(n-7) +2*(-17*n+98)*a(n-8) +16*(-2*n+15)*a(n-9)=0. - R. J. Mathar, Oct 08 2016
Showing 1-5 of 5 results.