cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A109034 First differences of A109033.

Original entry on oeis.org

1, 0, 1, 4, 16, 66, 280, 1216, 5384, 24224, 110464, 509480, 2372704, 11142656, 52709600, 250933120, 1201354240, 5780413760, 27937867520, 135574988800, 660314620160, 3226731934720, 15815752724480, 77735943378560
Offset: 0

Views

Author

Emeric Deutsch, Jun 16 2005

Keywords

Examples

			G.f. = 1 + x^2 + 4*x^3 + 16*x^4 + 66*x^5 + 280*x^6 + 1216*x^7 + 5384*x^8 + ...
		

Crossrefs

Cf. A109033.

Programs

  • Maple
    G:=(1-sqrt(1-8*x+16*x^2-8*x^3))/4/x: Gser:=series(G,x=0,30): 1,seq(coeff(Gser,x^n),n=1..27);
  • Mathematica
    Join[{1},Differences[CoefficientList[Series[(1-Sqrt[1-8x+16x^2-8x^3])/ (4x(1-x)),{x,0,30}],x]]] (* Harvey P. Dale, Jul 06 2011 *)
  • PARI
    {a(n) = if( n<0, 0, polcoeff( 2 * (1 - x)^2 / (1 + sqrt(1 - 8*x + 16*x^2 - 8*x^3 + x * O(x^n))), n))} /* Michael Somos, Jan 05 2012 */

Formula

G.f. A(x) = y satisfies 0 = 2*x*y^2 - y + (1-x)^2. - Michael Somos, Jan 05 2012
Given g.f. A(x), then B(x) = (A(x) - 1) / x satisfies B(-B(-x)) = x and B(x) - x = 4 * (B(x) * x) + 2 * (B(x) * x)^2. - Michael Somos, Jan 05 2012
G.f.: 2 * (1 - x)^2 / (1 + sqrt(1 - 8*x + 16*x^2 - 8*x^3)). - Michael Somos, Jan 05 2012
G.f. = (1 - sqrt(1 - 8*x + 16*x^2 - 8*x^3))/(4*x).
a(n) ~ 5^(1/4) * 2^(n-2) * phi^(2*n + 1/2) / (sqrt(Pi) * n^(3/2)), where phi = A001622 is the golden ratio. - Vaclav Kotesovec, Dec 10 2021
D-finite with recurrence (n+1)*a(n) +4*(-2*n+1)*a(n-1) +16*(n-2)*a(n-2) +4*(-2*n+7)*a(n-3)=0. - R. J. Mathar, Jul 24 2022

A026375 a(n) = Sum_{k=0..n} binomial(n,k)*binomial(2*k,k).

Original entry on oeis.org

1, 3, 11, 45, 195, 873, 3989, 18483, 86515, 408105, 1936881, 9238023, 44241261, 212601015, 1024642875, 4950790605, 23973456915, 116312293305, 565280386625, 2751474553575, 13411044301945, 65448142561035, 319756851757695
Offset: 0

Views

Author

Keywords

Comments

a(n) is the number of integer strings s(0),...,s(n) counted by array T in A026374 that have s(n)=0; also a(n)=T(2n,n).
Partial sums of A085362. Number of bilateral Schroeder paths (i.e., lattice paths consisting of steps U=(1,1), D=(1,-1) and H=(2,0)) from (0,0) to (2n,0) and with no H-steps at odd (positive or negative) levels. Example: a(2)=11 because we have HUD, UDH, UDUD, UUDD, UDDU, their reflections in the x-axis and HH. - Emeric Deutsch, Jan 30 2004
Largest coefficient of (1+3*x+x^2)^n; row sums of triangle in A124733. - Philippe Deléham, Oct 02 2007
Also number of paths from (0,0) to (n,0) using steps U=(1,1), H=(1,0) and D=(1,-1), the H steps come in three colors. - N-E. Fahssi, Feb 05 2008
Equals INVERT transform of A109033: (1, 2, 6, 22, 88, ...), INVERTi transform of A111966, binomial transform of A000984, and inverse Binomial transform of A081671. Convolved with A002212: (1, 3, 10, 36, ...) = A026376: (1, 6, 30, 144, ...). Equals convolution square root of A003463: (1, 6, 31, 156, 781, 3906, ...). - Gary W. Adamson, May 17 2009
Diagonal of array with rational generating function 1/(1 - (x^2 + 3*x*y + y^2)). - Gheorghe Coserea, Jul 29 2018
a(n) == 0 (mod 3) if and only if n is in A081606. - Fabio Visonà, Aug 03 2023

Examples

			G.f. = 1 + 3*x + 11*x^2 + 45*x^3 + 195*x^4 + 873*x^5 + 3989*x^6 + ...
		

Crossrefs

Column 3 of A292627. Column 1 of A110165. Central column of A272866.
First differences are in A085362. Bisection of A026380.
m-th binomial transforms of A000984: A126869 (m = -2), A002426 (m = -1 and m = -3 for signed version), A000984 (m = 0 and m = -4 for signed version), A026375 (m = 1 and m = -5 for signed version), A081671 (m = 2 and m = -6 for signed version), A098409 (m = 3 and m = -7 for signed version), A098410 (m = 4 and m = -8 for signed version), A104454 (m = 5 and m = -9 for signed version).

Programs

  • GAP
    List([0..25],n->Sum([0..n],k->Binomial(n,k)*Binomial(2*k,k))); # Muniru A Asiru, Jul 29 2018
  • Haskell
    a026375 n = a026374 (2 * n) n  -- Reinhard Zumkeller, Feb 22 2014
    
  • Maple
    seq( add(binomial(n,k)*binomial(2*k,k), k=0..n), n=0..30 ); # Detlef Pauly (dettodet(AT)yahoo.de), Nov 08 2001
    a := n -> simplify(GegenbauerC(n, -n, -3/2)):
    seq(a(n), n=0..22); # Peter Luschny, May 09 2016
  • Mathematica
    Table[SeriesCoefficient[1/Sqrt[1-6*x+5*x^2],{x,0,n}],{n,0,20}] (* Vaclav Kotesovec, Oct 08 2012 *)
    (* From Michael Somos, May 11 2014: (Start) *)
    a[ n_] := Sum[ Binomial[n, k] Binomial[2 k, k], {k, 0, n}];
    a[ n_] := If[ n < 0, 0, Hypergeometric2F1[-n, 1/2, 1, -4]];
    a[ n_] := If[ n < 0, 0, Coefficient[(1 + 3 x + x^2)^n, x, n]];
    a[ n_] := If[ n < 0, 0, n! SeriesCoefficient[Exp[3 x] BesselI[0,2 x], {x, 0, n}]];
    (* (End) *)
  • Maxima
    A026375(n):=coeff(expand((1+3*x+x^2)^n),x,n);
    makelist(A026375(n),n,0,12); /* Emanuele Munarini, Mar 02 2011 */
    
  • PARI
    {a(n) = if( n<0, 0, polcoeff( (1 + 3*x + x^2)^n, n))}; /* Michael Somos, Sep 09 2002 */
    
  • PARI
    a(n)={my(v=Vec((1-x-x^2)^n)); sum(k=1,#v, v[k]^2);} \\ Joerg Arndt, Jul 06 2011
    
  • PARI
    {a(n) = sum(k=0, n, 5^(n-k)*(-1)^k*binomial(n, k)*binomial(2*k, k))} \\ Seiichi Manyama, Apr 22 2019
    
  • PARI
    {a(n) = sum(k=0, n\2, 3^(n-2*k)*binomial(n, 2*k)*binomial(2*k, k))} \\ Seiichi Manyama, May 04 2019
    

Formula

Representation by Gauss's hypergeometric function, in Maple notation: a(n)=hypergeom([ -n, 1/2 ], [ 1 ], -4). - Karol A. Penson, Apr 20 2001
This sequence is the binomial transform of A000984. - John W. Layman, Aug 11 2000; proved by Emeric Deutsch, Oct 26 2002
E.g.f.: exp(3*x)*I_0(2x), where I_0 is Bessel function. - Michael Somos, Sep 17 2002
G.f.: 1/sqrt(1-6*x+5*x^2). - Emeric Deutsch, Oct 26 2002
D-finite with recurrence: n*a(n)-3*(2*n-1)*a(n-1)+5*(n-1)*a(n-2)=0 for n > 1. - Emeric Deutsch, Jan 24 2004
From Emeric Deutsch, Jan 30 2004: (Start)
a(n) = [t^n](1+3*t+t^2)^n;
a(n) = Sum_{j=ceiling(n/2)..n} 3^(2*j-n)*binomial(n, j)*binomial(j, n-j). (End)
a(n) = A026380(2*n-1) (n>0). - Emeric Deutsch, Feb 18 2004
G.f.: 1/(1-x-2*x/(1-x/(1-x-x/(1-x/(1-x-x/(1-x/(1-x-x/(1-x... (continued fraction). - Paul Barry, Jan 06 2009
a(n) = sum of squared coefficients of (1+x-x^2)^n - see triangle A084610. - Paul D. Hanna, Jul 18 2009
a(n) = sum of squares of coefficients of (1-x-x^2)^n. - Joerg Arndt, Jul 06 2011
a(n) = (1/Pi)*Integral_{x=-2..2} ((3+x)^n/sqrt((2-x)*(2+x))) dx. - Peter Luschny, Sep 12 2011
a(n) ~ 5^(n+1/2)/(2*sqrt(Pi*n)). - Vaclav Kotesovec, Oct 08 2012
G.f.: G(0)/(1-x), where G(k) = 1 + 4*x*(4*k+1)/( (4*k+2)*(1-x) - 2*x*(1-x)*(2*k+1)*(4*k+3)/(x*(4*k+3) + (1-x)*(k+1)/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Jun 24 2013
0 = a(n)*(+25*a(n+1) - 45*a(n+2) + 10*a(n+3)) + a(n+1)*(-15*a(n+1) + 36*a(n+2) - 9*a(n+3)) + a(n+2)*(-3*a(n+2) + a(n+3)) for all n in Z. - Michael Somos, May 11 2014
a(n) = GegenbauerC(n, -n, -3/2). - Peter Luschny, May 09 2016
a(n) = Sum_{k=0..n} 5^(n-k) * (-1)^k * binomial(n,k) * binomial(2*k,k). - Seiichi Manyama, Apr 22 2019
a(n) = Sum_{k=0..floor(n/2)} 3^(n-2*k) * binomial(n,2*k) * binomial(2*k,k). - Seiichi Manyama, May 04 2019
a(n) = (1/Pi) * Integral_{x = -1..1} (1 + 4*x^2)^n/sqrt(1 - x^2) dx = (1/Pi) * Integral_{x = -1..1} (5 - 4*x^2)^n/sqrt(1 - x^2) dx. - Peter Bala, Jan 27 2020
From Peter Bala, Jan 10 2022: (Start)
1 + x*exp(Sum_{n >= 1} a(n)*x^n/n) = 1 + x + 3*x^2 + 10*x^3 + 36*x^4 + ... is the o.g.f. of A002212.
The Gauss congruences a(n*p^k) == a(n*p^(k-1)) (mod p^k) hold for prime p and positive integers n and k. (End)
a(n) = (1/4)^n * Sum_{k=0..n} 5^k * binomial(2*k,k) * binomial(2*(n-k),n-k). - Seiichi Manyama, Aug 18 2025

Extensions

Definition simplified by N. J. A. Sloane, Feb 16 2012

A134751 Hankel transform of expansion of (1/(1-x^2))c(x/(1-x^2)), where c(x) is the g.f. of A000108.

Original entry on oeis.org

1, 2, 8, 32, 256, 4096, 65536, 2097152, 134217728, 8589934592, 1099511627776, 281474976710656, 72057594037927936, 36893488147419103232, 37778931862957161709568, 38685626227668133590597632
Offset: 0

Views

Author

Paul Barry, Nov 08 2007

Keywords

Comments

Hankel transform of A105864.
The sequence 1,1,2,8,... with general term 2^floor(n^2/3) is the Hankel transform of A109033. - Paul Barry, Dec 14 2008

Programs

  • Mathematica
    a[ n_] := 2^Quotient[(n+1)^2, 3]; (* Michael Somos, May 12 2022 *)
  • PARI
    {a(n) = 2^((n+1)^2\3)}; /* Michael Somos, May 12 2022 */

Formula

a(n) = 2^floor((n+1)^2/3);
a(n) = Product_{k=1..n} (5/3 - 2*cos(2*Pi*k/3)/3)^(n-k+1);
a(n) = Product_{k=1..n} A130196(k)^(n-k+1).
a(n) = 4*a(n-1)*a(n-3)/a(n-4). Somos-4 sequence associated to, e.g., y^2 = 1 - 8x + 16x^2 - 8x^3. - Paul Barry, Nov 27 2009
a(n) = a(-2-n) for all n in Z. - Michael Somos, May 12 2022

A168494 Sequence with Hankel transform equal to 3^floor(n^2/3).

Original entry on oeis.org

1, 1, 2, 7, 32, 160, 830, 4405, 23798, 130498, 724748, 4069258, 23064608, 131809108, 758696492, 4394825647, 25600773272, 149877922228, 881394158558, 5204245242208, 30841413359186, 183381577399006, 1093695670905206
Offset: 0

Views

Author

Paul Barry, Nov 27 2009

Keywords

Comments

Hankel transform is A168495.

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[(1+x-Sqrt[1-10*x+25*x^2-12*x^3])/(6*x*(1-x)), {x, 0, 20}], x] (* Vaclav Kotesovec, Oct 24 2012 *)

Formula

G.f.: 1/(1-x/(1-x/(1-3x/(1-x/(1-x/(1-3x/(1-x/(1-x/(1-3x/(1-.... (continued fraction);
G.f.: 1/(1-x-x^2/(1-4x-3x^2/(1-2x-3x^2/(1-4x-x^2/(1-4x-3x^2/(1-2x-3x^2/(1-4x-x^2/(1-... (continued fraction),
with sequences (1,3,3,1,3,3,1,3,3,1,...) and (1,4,2,4,4,2,4,4,2,4,4,...).
G.f.: (1+x-sqrt(1-10x+25x^2-12x^3))/(6x(1-x)).
a(n) = Sum_{k=0..n} A091866(n,k)*3^(n-k). - Philippe Deléham, Nov 27 2009
Conjecture: (n+1)*a(n) +(4-11*n)*a(n-2) +5*(7*n-11)*a(n-2) +(92-37*n) * a(n-3) +6*(2*n-7)*a(n-4) = 0. - R. J. Mathar, Sep 30 2012
a(n) ~ sqrt(33-sqrt(33))*((7+sqrt(33))/2)^n/(12*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Oct 24 2012
Showing 1-4 of 4 results.