cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A105864 Expansion of (1/(1-x^2))*c(x/(1-x^2)), where c(x) is the g.f. of A000108.

Original entry on oeis.org

1, 1, 3, 7, 21, 65, 215, 735, 2585, 9281, 33883, 125383, 469229, 1772801, 6752623, 25902975, 99978865, 388001025, 1513077235, 5926139207, 23301146501, 91942524481, 363957103303, 1444966207967, 5752187960841, 22955311342145
Offset: 0

Views

Author

Paul Barry, Apr 23 2005

Keywords

Comments

Binomial transform is A059279.
Hankel transform is A134751. - Paul Barry, Oct 07 2008
The radius of convergence r of the g.f. A(x) satisfies: r = (1-r^2)/4 = lim_{n->inf} a(n)/a(n+1) = sqrt(5) - 2 = 0.2360679... with A(r) = 1/(2*r) = (sqrt(5) + 2)/2 = 2.1180339... - Paul D. Hanna, Sep 06 2011

Crossrefs

Partial sums of A128750.

Programs

  • Mathematica
    a[0] = a[1] = 1; a[2] = 3; a[3] = 7; a[n_] := a[n] = (-((n-3)*a[n-4]) - 2*(2*n-3)*a[n-3] + 2*(n-1)*a[n-2] + 2*(2*n-1)*a[n-1])/(n+1); Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Sep 09 2017, using "FindSequenceFunction" *)
  • PARI
    {a(n)=polcoeff((1-sqrt(1-4*x/(1-x^2 +O(x^(n+2)))))/(2*x), n)} /* Paul D. Hanna */

Formula

G.f.: (1 - sqrt((1 - 4*x - x^2)/(1 - x^2)))/(2*x).
a(n) = Sum_{k=0..floor(n/2)} binomial(n-k, k) * A000108(n-2*k).
G.f. satisfies: A(x) = 1/(1-x^2) + x*A(x)^2. - Paul D. Hanna, Sep 06 2011
Conjecture: (n+1)*a(n) + 2*(1-2*n)*a(n-1) + 2*(1-n)*a(n-2) + 2*(2*n-3)*a(n-3) + (n-3)*a(n-4) = 0. - R. J. Mathar, Nov 15 2011
G.f.: (1-1/G(0))/(2*x), where G(k) = 1 + 4*x*(4*k+1)/( (1-x^2)*(4*k+2) - x*(1-x^2)*(4*k+2)*(4*k+3)/(x*(4*k+3) + (1-x^2)*(k+1)/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Jun 26 2013
a(n) ~ 5^(1/4)*(2+sqrt(5))^(n+1)/(4*sqrt(2*Pi)*n^(3/2)). - Vaclav Kotesovec, Sep 16 2013
G.f.: 1/G(x), where G(x) = 1 - x^2 - (x - x^3)/ G(x) (continued fraction). - Nikolaos Pantelidis, Jan 08 2023
Showing 1-1 of 1 results.