A128766 Number of inequivalent n-colorings of the vertices of the 3D cube under full orthogonal group of the cube (of order 48).
1, 22, 267, 1996, 10375, 41406, 135877, 384112, 966141, 2212750, 4693711, 9340332, 17610307, 31703686, 54839625, 91604416, 148382137, 233880102, 359762131, 541403500, 798782271, 1157522542, 1650105997, 2317268976, 3209603125
Offset: 1
Examples
a(2)=22 because there are 22 inequivalent 2-colorings of the 3D cube, including two for which all of the vertices have the same color.
References
- Banks, D. C.; Linton, S. A. & Stockmeyer, P. K. Counting Cases in Substitope Algorithms. IEEE Transactions on Visualization and Computer Graphics, Vol. 10, No. 4, pp. 371-384. 2004.
- Perez-Aguila, Ricardo. Enumerating the Configurations in the n-Dimensional Orthogonal Polytopes Through Polya's Counting and A Concise Representation. Proceedings of the 3rd International Conference on Electrical and Electronics Engineering and XII Conference on Electrical Engineering ICEEE and CIE 2006, pp. 63-66.
- Polya, G. & Read R. C. Combinatorial Enumeration of Groups, Graphs and Chemical Compounds. Springer-Verlag, 1987.
Links
- Banks, D. C.; Linton, S. A. & Stockmeyer, P. K., Counting Cases in Substitope Algorithms, IEEE Transactions on Visualization and Computer Graphics, Vol. 10, No. 4, pp. 371-384. 2004.
- Perez-Aguila, Ricardo, Orthogonal Polytopes: Study and Application, PhD Thesis. Universidad de las Americas, Puebla. November, 2006.
- Perez-Aguila, Ricardo, Enumerating the Configurations in the n-Dimensional Orthogonal Polytopes Through Polya's Counting and A Concise Representation, Proceedings of the 3rd International Conference on Electrical and Electronics Engineering and XII Conference on Electrical Engineering ICEEE and CIE 2006, pp. 63-66.
Programs
-
Mathematica
A[n_] := (1/48)*(20*n^2 + 21*n^4 + 6*n^6 + n^8) (*or*) Drop[Table[CycleIndex[GraphData[{"Hypercube",3},"Automorphisms"],s]/.Table[s[i]->n,{i,1,8}],{n,0,25}],1] (* Geoffrey Critzer, Mar 31 2013 *)
Formula
a(n) = (1/48)*(20*n^2 + 21*n^4 + 6*n^6 + n^8).
G.f.: x*(1+x)*(1+12*x+93*x^2+208*x^3+93*x^4+12*x^5+x^6)/(1-x)^9. [Colin Barker, Mar 08 2012]
Cycle Index is (1/48)*(s[1]^8 + 6*s[1]^4*s[2]^2 + 13*s[2]^4 + 8*s[1]^2*s[3]^2 + 12*s[4]^2 + 8*s[2]*s[6]) - Geoffrey Critzer, Mar 31 2013
a(n)=C(n,1)+20C(n,2)+204C(n,3)+1056C(n,4)+2850C(n,5)+4080C(n,6)+2940C(n,7)+840C(n,8). Each term indicates the number of ways to use n colors to color the cube vertices (octahedron faces) with exactly 1, 2, 3, 4, 5, 6, 7, or 8 colors.
Comments