A128767 Number of inequivalent n-colorings of the 4D hypercube under the full orthogonal group of the cube (of order 2^4*4! = 384).
1, 402, 132102, 11756666, 405385550, 7416923886, 86986719477, 735192450952, 4834517667381, 26073250910950, 119759687845446, 481750080584202, 1733588303252702, 5673534527793146, 17109303241791825, 48047227408513056
Offset: 1
Examples
a(2)=402 because there are 402 inequivalent 2-colorings of the 4D hypercube.
References
- Banks, D. C.; Linton, S. A. & Stockmeyer, P. K. Counting Cases in Substitope Algorithms. IEEE Transactions on Visualization and Computer Graphics, Vol. 10, No. 4, pp. 371-384. 2004.
- Perez-Aguila, Ricardo. Enumerating the Configurations in the n-Dimensional Orthogonal Polytopes Through Polya's Counting and A Concise Representation. Proceedings of the 3rd International Conference on Electrical and Electronics Engineering and XII Conference on Electrical Engineering ICEEE and CIE 2006, pp. 63-66.
- Polya, G. & Read R. C. Combinatorial Enumeration of Groups, Graphs and Chemical Compounds. Springer-Verlag, 1987.
Links
- Banks, D. C.; Linton, S. A. & Stockmeyer, P. K., Counting Cases in Substitope Algorithms, IEEE Transactions on Visualization and Computer Graphics, Vol. 10, No. 4, pp. 371-384. 2004.
- Perez-Aguila, Ricardo, Orthogonal Polytopes: Study and Application, PhD Thesis. Universidad de las Americas, Puebla. November, 2006.
- Perez-Aguila, Ricardo, Enumerating the Configurations in the n-Dimensional Orthogonal Polytopes Through Polya's Counting and A Concise Representation, Proceedings of the 3rd International Conference on Electrical and Electronics Engineering and XII Conference on Electrical Engineering ICEEE and CIE 2006, pp. 63-66.
- Index entries for linear recurrences with constant coefficients, signature (17,-136,680,-2380,6188,-12376,19448,-24310,24310,-19448,12376,-6188,2380,-680,136,-17,1).
Crossrefs
Other elements: A331359 (tesseract edges, hyperoctahedron faces), A331355 (tesseract faces, hyperoctahedron edges), A337957 (tesseract facets, hyperoctahedron vertices).
Other polychora: A000389(n+4) (4-simplex facets/vertices), A338949 (24-cell), A338965 (120-cell, 600-cell).
Row 4 of A325013 (orthoplex facets, orthotope vertices).
Programs
-
Mathematica
Table[(1/384)*( 48*n^2 + 180*n^4 + 48*n^6 + 83*n^8 + 12*n^10 + 12*n^12 + n^16),{n,30}]
Formula
a(n) = (1/384)*(48*n^2 + 180*n^4 + 48*n^6 + 83*n^8 + 12*n^10 + 12*n^12 + n^16)
G.f.: -x*(x +1)*(x^14 +384*x^13 +125020*x^12 +9439904*x^11 +213777216*x^10 +1821620108*x^9 +6527222787*x^8 +10098845160*x^7 +6527222787*x^6 +1821620108*x^5 +213777216*x^4 +9439904*x^3 +125020*x^2 +384*x +1) / (x -1)^17. [Colin Barker, Dec 04 2012]
From Robert A. Russell, Oct 03 2020: (Start)
a(n) = 1*C(n,1) + 400*C(n,2) + 130899*C(n,3) + 11230666*C(n,4) + 347919225*C(n,5) + 5158324560*C(n,6) + 43174480650*C(n,7) + 225086553300*C(n,8) + 775894225050*C(n,9) + 1831178115900*C(n,10) + 3008073915000*C(n,11) + 3439243962000*C(n,12) + 2685727044000*C(n,13) + 1366701336000*C(n,14) + 408648240000*C(n,15) + 54486432000*C(n,16), where the coefficient of C(n,k) is the number of unoriented colorings using exactly k colors.
(End)
Comments