A128820 Numerator of alternating generalized harmonic number H'(p-1,2p) = Sum_{k=1..p-1} (-1)^(k+1)/k^(2*p) divided by p^2 for prime p > 2.
7, 2474315503, 53305712401979540402437, 5597916593064896381208777124641713285719656398067086247546781015747740847, 192635872080422175485338764164035657976855166649911323825254242037669356649787653784405726270977624462974729613783
Offset: 2
Keywords
Examples
prime(2) = 3; a(2) = numerator(1 - 1/2^6) / 3^2 = 63/9 = 7. prime(3) = 5; a(3) = numerator(1 - 1/2^10 + 1/3^10 - 1/4^10) / 5^2 = 61857887575/25 = 2474315503.
Links
- Eric Weisstein's World of Mathematics, Harmonic Number
- Eric Weisstein's World of Mathematics, Wolstenholme's Theorem
Crossrefs
Programs
-
Mathematica
Table[ Numerator[ Sum[(-1)^(k+1)*1/k^(2*Prime[n]), {k,1,Prime[n]-1} ] ] / Prime[n]^2, {n,2,10} ]
Formula
a(n) = numerator(Sum_{k=1..prime(n)-1} (-1)^(k+1)/k^(2*prime(n))) / prime(n)^2 for n > 1.
Comments