A128831 Number of n-tuples where each entry is chosen from the subsets of {1,2,3} such that the intersection of all n entries is empty.
1, 27, 343, 3375, 29791, 250047, 2048383, 16581375, 133432831, 1070599167, 8577357823, 68669157375, 549554511871, 4397241253887, 35181150961663, 281462092005375, 2251748274470911, 18014192351838207, 144114363443707903
Offset: 1
Examples
a(1)=(2^1-1)^3=1 because only one tuple of length one, namely ({}) has an empty intersection of its sole entry. a(2)=27 because the valid 2-tuples are: ({},{}), ({},{1}), ({},{2}), ({},{3}), ({},{1,2}), ({},{1,3}), ({},{2,3}), ({},{1,2,3}), ({1},{}), ({2},{}), ({3},{}), ({1,2},{}), ({1,3},{}), ({2,3},{}), ({1,2,3},{}), ({1},{2}), ({1},{3}), ({1},{2,3}), ({2},{1}), ({2},{3}), ({2},{1,3}), ({3},{1}), ({3},{2}), ({3},{1,2}), ({1,2},{3}), ({1,3},{2}), ({2,3},{1})
References
- R. P. Stanley, Enumerative Combinatorics, Volume 1, Wadsworth & Brooks 1986 p. 11.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (15,-70,120,-64).
Crossrefs
Cf. A060867.
Programs
-
Magma
[(2^n-1)^3: n in [1..20]]; // Vincenzo Librandi, Mar 04 2018
-
Maple
for k from 1 to 20 do (2^k-1)^3; od;
-
Mathematica
Table[(2^n - 1)^3, {n, 30}] (* Vincenzo Librandi, Mar 04 2018 *)
-
PARI
a(n) = (2^n-1)^3; \\ Altug Alkan, Mar 04 2018
Formula
a(n) = (2^n-1)^3.
G.f.: x*(8*x^2+12*x+1)/((x-1)*(2*x-1)*(4*x-1)*(8*x-1)). [Colin Barker, Nov 17 2012]
Comments