A128833 Number of n-tuples where each entry is chosen from the subsets of {1,2,3,4,5} such that the intersection of all n entries is empty.
1, 243, 16807, 759375, 28629151, 992436543, 33038369407, 1078203909375, 34842114263551, 1120413075641343, 35940921946155007, 1151514816750309375, 36870975646169341951, 1180231376725002502143, 37773167607267111108607
Offset: 1
Examples
a(1)=(2^1-1)^5=1 because only one tuple of length one, namely ({}) has an empty intersection of its sole entry.
References
- Richard P. Stanley, Enumerative Combinatorics, Volume 1, Wadsworth & Brooks, 1986, p. 11.
Links
- Harvey P. Dale, Table of n, a(n) for n = 1..664
- Index entries for linear recurrences with constant coefficients, signature (63,-1302,11160,-41664,64512,-32768).
Crossrefs
Cf. A060867.
Programs
-
Maple
for k from 1 to 20 do (2^k-1)^5; od;
-
Mathematica
(2^Range[20]-1)^5 (* or *) LinearRecurrence[{63,-1302,11160,-41664,64512,-32768},{1,243,16807,759375,28629151,992436543},20] (* or *) CoefficientList[Series[x (1024x^4+5760x^3+2800x^2+180x+1)/((x-1)(2x-1)(4x-1)(8x-1)(16x-1)(32x-1)),{x,0,20}],x] (* Harvey P. Dale, Aug 16 2021 *)
Formula
a(n) = (2^n-1)^5
G.f.: x*(1024*x^4+5760*x^3+2800*x^2+180*x+1)/((x-1)*(2*x-1)*(4*x-1)*(8*x-1)*(16*x-1)*(32*x-1)). [Colin Barker, Nov 17 2012]
Comments