A128852 Anti-elite primes: a prime number p is called anti-elite if only a finite number of Fermat numbers 2^(2^n)+1 are quadratic non-residues mod p.
2, 13, 17, 97, 193, 241, 257, 641, 673, 769, 2689, 5953, 8929, 12289, 40961, 49921, 61681, 65537, 101377, 114689, 274177, 286721, 319489, 414721, 417793, 550801, 786433, 974849, 1130641, 1376257, 1489153, 1810433, 2424833, 3602561, 6700417
Offset: 1
Keywords
Examples
Let F_r:=2^(2^r)+1 = r-th Fermat number. Then a(2)=13 because for all r>1 we have F_r == 4 (mod 13) if r is even, resp. F_r == 10 (mod 13) if r is odd. Notice that 4 and 10 are quadratic residues modulo 13.
References
- Alexander Aigner; Über Primzahlen, nach denen (fast) alle Fermatzahlen quadratische Nichtreste sind. Monatsh. Math. 101 (1986), pp. 85-93
Links
- Dennis Martin, Table of n, a(n) for n = 1..101
- M. Krizek, F. Luca, I. E. Shparlinski, L. Somer, On the complexity of testing elite primes, J. Int. Seq. 14 (2011) # 11.1.2
- Dennis Martin, Anti-Elite Prime Search
- Dennis Martin, Anti-Elite Prime Search [Cached copy, with permission of author]
- Tom Müller, On Anti-Elite Prime Numbers, J. Integer Sequences, Vol. 10 (2007), Article 07.9.4.
- Tom Müller, On the Fermat Periods of Natural Numbers, J. Int. Seq. 13 (2010) # 10.9.5.
- Tom Müller, On the Exponents of Non-Trivial Divisors of Odd Numbers and a Generalization of Proth's Primality Theorem, Journal of Integer Sequences, Vol. 20 (2017), Article 17.2.7.
Crossrefs
Programs
-
PARI
isAntiElite(n) = if(isprime(n) && n > 2, my(d = znorder(Mod(2,n)), StartPoint = valuation(d,2), LengthTest = znorder(Mod(2, d >> StartPoint))); for(i = StartPoint, StartPoint + LengthTest - 1, if(!issquare(Mod(2,n)^2^i + 1), return(0))); 1, n == 2) \\ Jianing Song, May 15 2024
Comments