cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Tom Mueller

Tom Mueller's wiki page.

Tom Mueller has authored 10 sequences.

A272894 a(n) is the largest natural number k such that the composite number (2n+1) 2^k+1 has a nontrivial divisor of the form h2^s+1 (h odd) with s>k. If such a natural number does not exist, we set a(n)=0.

Original entry on oeis.org

0, 0, 0, 1, 0, 2, 1, 0, 1, 3, 2, 0, 1, 1, 2, 2, 0, 4, 3, 0, 2, 1, 1, 2, 1, 2, 3, 3, 1, 1, 2, 0, 2, 5, 4, 2, 3, 0, 1, 1, 2, 2, 1, 3, 2, 3, 1, 0, 1, 0, 4, 4, 0, 2, 3, 2, 0, 1, 1, 2, 3, 2, 0, 3, 1, 6, 5, 0, 4, 1, 2, 1, 3, 1, 1, 2, 3, 3, 2, 2, 2, 3, 0, 4, 3, 4, 2, 1, 1, 0, 3, 0, 2, 1, 3, 2, 1, 1, 5, 5, 2
Offset: 0

Author

Tom Mueller, May 09 2016

Keywords

Examples

			We always have 2^k + 1 < h2^s + 1 if k < s. Thus a(1)=0.
		

Crossrefs

Cf. A272895.

Programs

  • Maple
    a:= proc(n)
    H:=2*n+1:
    smax:=floor(evalf(log[2](H))):
    R:=0:
    for r from 1 to smax-1 do;
    for s from r+1 to smax do;
    kmax:=floor(evalf(H/2^s)):
    for k from 1 to kmax by 2 do;
    h:=(H-2^(s-r)*k)/(2^s*k+1):
    if h<1 then break fi;
    if type(h,integer) and R
    				

A272895 a(n) is the largest natural number k such that the composite number (2n+1) 2^k+1 has a nontrivial divisor of the form h2^s+1 (h odd) with 2s>k. If such a natural number does not exist, we set a(n)=0.

Original entry on oeis.org

0, 3, 4, 5, 5, 2, 6, 7, 6, 4, 3, 4, 7, 1, 8, 9, 8, 6, 3, 4, 6, 5, 1, 6, 8, 2, 6, 3, 9, 4, 10, 11, 10, 8, 4, 6, 5, 5, 5, 9, 6, 7, 2, 3, 8, 7, 3, 8, 9, 4, 8, 4, 4, 6, 4, 9, 10, 6, 7, 4, 11, 3, 12, 13, 12, 10, 5, 8, 8, 6, 6, 6, 5, 6, 6, 7, 3, 5, 10, 4, 8, 9, 0, 4, 8, 4, 5, 11, 8, 8, 3, 6, 10, 9, 4, 10
Offset: 0

Author

Tom Mueller, May 09 2016

Keywords

Crossrefs

Cf. A272894.

Programs

  • Maple
    H:=2n+1:
    smax:=floor(evalf(log[2](H))):
    R:=A272894(n)
    for m from 0 to smax do;
    for s from m+1 to smax+1 do;
    hmax:=floor(evalf(H/2^m)):
    for h from 1 to hmax by 2 do;
    k:=(2^(s-m)*H-h)/(2^s*h+1);
    if k
    				

A133187 Prime numbers formed by the concatenation of q and p, where q > p are also primes.

Original entry on oeis.org

53, 73, 113, 137, 173, 193, 197, 233, 293, 313, 317, 373, 433, 593, 613, 617, 673, 677, 733, 797, 977, 1013, 1033, 1093, 1097, 1277, 1373, 1493, 1637, 1733, 1913, 1933, 1973, 1993, 1997, 2113, 2237, 2273, 2293, 2297, 2311, 2333, 2393, 2417, 2633, 2693, 2713
Offset: 1

Author

Tom Mueller (muel4503(AT)uni-trier.de), Dec 17 2007

Keywords

Comments

These numbers are called Caesar primes because the birth date of Julius Caesar (July 13th) provides one example of such a number, i.e. p=7 and q=13 give the prime 137.

Crossrefs

Programs

  • Mathematica
    lim=2700;plim=Max[FromDigits[Rest[IntegerDigits[lim]]],FromDigits[Drop[IntegerDigits[lim],-1]]];f2p[{p_,q_}]:=FromDigits[Join[IntegerDigits[q],IntegerDigits[p]]];p=Prime[Range[PrimePi[plim]]];p2=Subsets[p,{2}];Union[Select[f2p/@p2,PrimeQ[#]&&#<=lim&]] (* James C. McMahon, Mar 12 2025 *)
  • Python
    from sympy import isprime
    def ok(n):
        if not isprime(n): return False
        s = str(n)
        return any(s[i]!='0' and (q:=int(s[:i])) > (p:=int(s[i:])) and isprime(q) and isprime(p) for i in range(1, len(s)))
    print([k for k in range(2800) if ok(k)]) # Michael S. Branicky, Apr 05 2025

Extensions

a(27)-a(47) from James C. McMahon, Mar 12 2025

A128852 Anti-elite primes: a prime number p is called anti-elite if only a finite number of Fermat numbers 2^(2^n)+1 are quadratic non-residues mod p.

Original entry on oeis.org

2, 13, 17, 97, 193, 241, 257, 641, 673, 769, 2689, 5953, 8929, 12289, 40961, 49921, 61681, 65537, 101377, 114689, 274177, 286721, 319489, 414721, 417793, 550801, 786433, 974849, 1130641, 1376257, 1489153, 1810433, 2424833, 3602561, 6700417
Offset: 1

Author

Tom Mueller, Apr 16 2007

Keywords

Comments

There are infinitely many anti-elite primes.

Examples

			Let F_r:=2^(2^r)+1 = r-th Fermat number. Then a(2)=13 because for all r>1 we have F_r == 4 (mod 13) if r is even, resp. F_r == 10 (mod 13) if r is odd. Notice that 4 and 10 are quadratic residues modulo 13.
		

References

  • Alexander Aigner; Über Primzahlen, nach denen (fast) alle Fermatzahlen quadratische Nichtreste sind. Monatsh. Math. 101 (1986), pp. 85-93

Crossrefs

Cf. A102742.
Contains all Fermat prime factors of Fermat numbers (A023394) that are greater than 5.

Programs

  • PARI
    isAntiElite(n) = if(isprime(n) && n > 2, my(d = znorder(Mod(2,n)), StartPoint = valuation(d,2), LengthTest = znorder(Mod(2, d >> StartPoint))); for(i = StartPoint, StartPoint + LengthTest - 1, if(!issquare(Mod(2,n)^2^i + 1), return(0))); 1, n == 2) \\ Jianing Song, May 15 2024

A102739 Numbers k such that 6*10^k-11 is prime.

Original entry on oeis.org

9, 15, 21, 44, 58, 64, 96, 108, 138, 160, 222, 534, 2060, 2446, 3884, 8794, 9879, 18303
Offset: 1

Author

Tom Mueller (muel4503(AT)uni-trier.de), Feb 08 2005

Keywords

Comments

Some of the larger entries may only correspond to probable primes.
Numbers corresponding to terms <= 534 are certified primes. - Klaus Brockhaus, Feb 16 2005

Programs

Extensions

a(12)-a(14) from Klaus Brockhaus, Feb 16 2005
a(15)-a(18) from Michael S. Branicky, Jul 12 2023

A102737 Numbers k such that 3*10^k - 11 is prime.

Original entry on oeis.org

1, 4, 7, 11, 14, 16, 22, 29, 36, 40, 65, 139, 149, 204, 842, 1031, 1331, 1345, 1505, 1894, 3386, 3526, 11092, 23836, 37836, 138811, 182614
Offset: 1

Author

Tom Mueller (muel4503(AT)uni-trier.de), Feb 08 2005

Keywords

Comments

Some of the larger entries may only correspond to probable primes.
Numbers corresponding to terms <= 842 are certified primes. - Klaus Brockhaus, Feb 16 2005
Next term > 12500. - Ryan Propper, Jul 21 2006
For k > 1, numbers k such that the digit 2 followed by k-2 occurrences of the digit 9 followed by the digits 89 is prime. - Robert Price, Nov 25 2017
a(28) > 2*10^5. - Robert Price, Jul 04 2018

Programs

Extensions

a(15)-a(19) from Klaus Brockhaus, Feb 16 2005
a(20)-a(23) from Ryan Propper, Jul 21 2006
a(24)-a(25) from Robert Price, Nov 25 2017
a(26) from Robert Price, Jul 04 2018
a(27) from Robert Price, Jul 25 2018

A102738 Numbers k such that 4*10^k - 11 is prime.

Original entry on oeis.org

1, 2, 3, 4, 5, 15, 35, 61, 256, 357, 628, 767, 1064, 1096, 6608, 14821, 15341, 18795, 22648, 24199, 31919, 38519, 44279
Offset: 1

Author

Tom Mueller (muel4503(AT)uni-trier.de), Feb 08 2005

Keywords

Comments

Numbers corresponding to terms <= 767 are certified primes. - Klaus Brockhaus, Feb 16 2005
The next term is larger than 2500. - Stefan Steinerberger, Feb 18 2006

Programs

Extensions

a(9)-a(14) from Klaus Brockhaus, Feb 16 2005
a(15) from Ryan Propper, Jul 21 2006
a(16)-a(17) from Michael S. Branicky, May 01 2023
a(18)-a(23) from Kamada data by Tyler Busby, May 03 2024

A102742 Elite primes: a prime number p is called elite if only a finite number of Fermat numbers 2^(2^n)+1 are quadratic residues mod p.

Original entry on oeis.org

3, 5, 7, 41, 15361, 23041, 26881, 61441, 87041, 163841, 544001, 604801, 6684673, 14172161, 159318017, 446960641, 1151139841, 3208642561, 38126223361, 108905103361, 171727482881, 318093312001, 443069456129, 912680550401, 1295536619521, 1825696645121, 2061584302081
Offset: 1

Author

Tom Mueller, Feb 08 2005; extended Jun 16 2005

Keywords

Comments

Křížek, Luca, Shparlinski, & Somer show that a(n) >> n log^2 n. - Charles R Greathouse IV, Jan 25 2017
Let d = 2^r*d' be the multiplicative order of 2 modulo p. Note that 2^2^s == 2^d == 1 (mod p), so p divides none of.

Crossrefs

Cf. A128852, A344785. Subsequence of A129802.

Programs

  • PARI
    list_upto(N)={forprime(p=3,N,r=2^valuation(p-1,2); a=Mod(3,p); v=List(); k=0; while(1,listput(v,a); a=(a-1)^2+1; for(j=1,#v,if(v[j]==a,k=j;break(2)))); for(i=k,#v,znorder(v[i]) % r != 0 && next(2)); print1(p,", "))} \\ Slow, only for illustration, Jeppe Stig Nielsen, Jan 28 2020
    
  • PARI
    isElite(n) = if(isprime(n) && n > 2, my(d = znorder(Mod(2,n)), StartPoint = valuation(d,2), LengthTest = znorder(Mod(2, d >> StartPoint))); for(i = StartPoint, StartPoint + LengthTest - 1, if(issquare(Mod(2,n)^2^i + 1), return(0))); 1, 0) \\ Jianing Song, May 15 2024

Formula

Sum_{n>=1} 1/a(n) = A344785. - Amiram Eldar, May 30 2021

Extensions

a(17) from Tom Mueller, Jul 20 2005
a(18)-a(21) from Tom Mueller, Apr 18 2006
6 further terms from Tom Mueller, Apr 16 2007

A102740 Numbers k such that 7*10^k - 11 is prime.

Original entry on oeis.org

1, 6, 7, 9, 10, 11, 16, 42, 53, 78, 321, 699, 1858, 3425, 4899, 5734, 11081, 11675, 12136, 14056, 16074, 77969, 158465
Offset: 1

Author

Tom Mueller (muel4503(AT)uni-trier.de), Feb 08 2005

Keywords

Comments

a(24) > 2*10^5.
Numbers corresponding to terms <= 699 are certified primes. - Klaus Brockhaus, Feb 15 2005
For k > 1, numbers k such that the digit 6 followed by k-2 occurrences of the digit 9 followed by the digits 89 is prime (see Example section).

Examples

			Initial terms and associated primes:
a(1) = 1, 59;
a(2) = 6, 6999989;
a(3) = 7, 69999989;
a(4) = 9, 6999999989;
a(5) = 10, 69999999989; etc.
		

Programs

  • Mathematica
    Select[Range[1, 100000], PrimeQ[7*10^# - 11] &]
  • PARI
    is(n)=ispseudoprime(7*10^n - 11) \\ Charles R Greathouse IV, Jun 13 2017

Extensions

a(11)-a(13) from Klaus Brockhaus, Feb 15 2005
a(14)-a(22) from Robert Price, Oct 29 2017
a(23) from Robert Price, Jun 21 2019

A070213 Numbers k such that A056542(k) is prime.

Original entry on oeis.org

4, 8, 18, 20, 70
Offset: 1

Author

Tom Mueller (muel4503(AT)uni-trier.de), May 07 2002

Keywords

Comments

The 6th term (if it exists) is larger than 1019.
No additional primes for n < 14000. - T. D. Noe, Jul 07 2005
a(6) > 25000. - Michael S. Branicky, Apr 16 2025

Crossrefs

Cf. A056542.

Extensions

a(5) from Tom Mueller (muel4503(AT)uni-trier.de), Oct 30 2004
Name clarified by Sean A. Irvine, Jun 02 2024