A272894 a(n) is the largest natural number k such that the composite number (2n+1) 2^k+1 has a nontrivial divisor of the form h2^s+1 (h odd) with s>k. If such a natural number does not exist, we set a(n)=0.
0, 0, 0, 1, 0, 2, 1, 0, 1, 3, 2, 0, 1, 1, 2, 2, 0, 4, 3, 0, 2, 1, 1, 2, 1, 2, 3, 3, 1, 1, 2, 0, 2, 5, 4, 2, 3, 0, 1, 1, 2, 2, 1, 3, 2, 3, 1, 0, 1, 0, 4, 4, 0, 2, 3, 2, 0, 1, 1, 2, 3, 2, 0, 3, 1, 6, 5, 0, 4, 1, 2, 1, 3, 1, 1, 2, 3, 3, 2, 2, 2, 3, 0, 4, 3, 4, 2, 1, 1, 0, 3, 0, 2, 1, 3, 2, 1, 1, 5, 5, 2
Offset: 0
Examples
We always have 2^k + 1 < h2^s + 1 if k < s. Thus a(1)=0.
Links
- Tom Müller, On the Exponents of Non-Trivial Divisors of Odd Numbers and a Generalization of Proth's Primality Theorem, Journal of Integer Sequences, Vol. 20 (2017), Article 17.2.7.
Crossrefs
Cf. A272895.
Programs
-
Maple
a:= proc(n) H:=2*n+1: smax:=floor(evalf(log[2](H))): R:=0: for r from 1 to smax-1 do; for s from r+1 to smax do; kmax:=floor(evalf(H/2^s)): for k from 1 to kmax by 2 do; h:=(H-2^(s-r)*k)/(2^s*k+1): if h<1 then break fi; if type(h,integer) and R
Comments