cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A344785 Decimal expansion of the sum of the reciprocals of the elite primes (A102742).

Original entry on oeis.org

7, 0, 0, 7, 6, 4, 0, 1, 1, 5
Offset: 0

Views

Author

Amiram Eldar, May 28 2021

Keywords

Comments

Křížek et al. (2002) proved that this series is convergent.
The first 10 terms were given by Finch (2018).

Examples

			0.7007640115...
		

References

  • Steven R. Finch, Mathematical Constants II, Cambridge University Press, 2018, Section 1.37, p. 247.

Crossrefs

Cf. A102742.

Formula

Equals Sum_{k>=1} 1/A102742(k).

A372895 Squarefree terms of A129802 whose prime factors are neither elite (A102742) nor anti-elite (A128852), where A129802 is the possible bases for Pepin's primality test for Fermat numbers.

Original entry on oeis.org

551, 1387, 2147, 8119, 8227, 8531, 10483, 21907, 29261, 29543, 30229, 52909, 58133, 65683, 73657, 81257, 81797, 84491, 89053, 89281, 97907, 114017, 184987, 187891, 227557, 228997, 238111, 263017, 369721, 405631, 436897, 450607, 453041, 468541, 472967, 498817, 521327, 641297, 732127, 736003, 810179, 930677
Offset: 1

Views

Author

Jianing Song, May 15 2024

Keywords

Comments

By construction, A129802 is the disjoint union of the two following sets of numbers: (a) products of a square, some distinct anti-elite primes, an even number of elite-primes and a term here; (b) products of a square, some distinct anti-elite primes, an odd number of elite-primes and a term in A372896.

Crossrefs

Programs

  • PARI
    isA372895(n) = {
    if(n%2 && issquarefree(n) && isA129802(n), my(f = factor(n)~[1,]); \\ See A129802 for its program
    for(i=1, #f, my(p=f[i], d = znorder(Mod(2, p)), StartPoint = valuation(d, 2), LengthTest = znorder(Mod(2, d >> StartPoint)), flag = 0); \\ To check if p = f[i] is an elite prime or an anti-elite prime, it suffices to check (2^2^i + 1) modulo p for StartPoint <= i <= StartPoint + LengthTest - 1; see A129802 or A372894
    for(j = StartPoint+1, StartPoint + LengthTest - 1, if(issquare(Mod(2, p)^2^j + 1) != issquare(Mod(2, p)^2^StartPoint + 1), flag = 1; break())); if(flag == 0, return(0))); 1, 0)
    }

A372896 Squarefree terms of A372894 whose prime factors are neither elite (A102742) nor anti-elite (A128852).

Original entry on oeis.org

1, 341, 671, 1891, 2117, 3277, 4033, 5461, 8249, 12557, 13021, 14531, 19171, 24811, 31609, 32777, 33437, 40951, 46139, 48929, 49981, 50737, 73279, 80581, 84169, 100253, 116143, 130289, 135923, 136271, 149437, 175577, 179783, 194417, 252361, 272491, 342151, 343027, 376169, 390641
Offset: 1

Views

Author

Jianing Song, May 15 2024

Keywords

Comments

By construction, A372894 is the disjoint union of the two following sets of numbers: (a) products of a square, some distinct anti-elite primes, an even number of elite-primes and a term here; (b) products of a square, some distinct anti-elite primes, an odd number of elite-primes and a term in A372895.

Crossrefs

Programs

  • PARI
    isA372896(n) = {
    if(n%2 && issquarefree(n) && isA372894(n), if(n==1, return(1)); my(f = factor(n)~[1,]); \\ See A372894 for its program
    for(i=1, #f, my(p=f[i], d = znorder(Mod(2, p)), StartPoint = valuation(d, 2), LengthTest = znorder(Mod(2, d >> StartPoint)), flag = 0); \\ To check if p = f[i] is an elite prime or an anti-elite prime, it suffices to check (2^2^i + 1) modulo p for StartPoint <= i <= StartPoint + LengthTest - 1; see A129802 or A372894
    for(j = StartPoint+1, StartPoint + LengthTest - 1, if(issquare(Mod(2, p)^2^j + 1) != issquare(Mod(2, p)^2^StartPoint + 1), flag = 1; break())); if(flag == 0, return(0))); 1, 0)
    }

A346542 Numbers k such that 5*2^k + 1 is an elite prime (A102742).

Original entry on oeis.org

3, 15, 55, 26607, 209787, 819739
Offset: 1

Views

Author

Arkadiusz Wesolowski, Sep 16 2021

Keywords

Comments

An integer k is in this sequence if and only if there is no solution to the congruence x^2 == 2^(2^k) + 1 (mod p), where p is a prime of the form 5*2^k + 1.
a(7) > 9*10^6.

Crossrefs

Subsequence of A002254.
Cf. A102742.

Programs

  • PARI
    isok(k)=my(p=5*2^k+1); k>2 && Mod(k, 2)==1 && Mod(3, p)^((p-1)/2)+1==0 && kronecker(lift(Mod(2, p)^2^k)+1, p)==-1;

A128852 Anti-elite primes: a prime number p is called anti-elite if only a finite number of Fermat numbers 2^(2^n)+1 are quadratic non-residues mod p.

Original entry on oeis.org

2, 13, 17, 97, 193, 241, 257, 641, 673, 769, 2689, 5953, 8929, 12289, 40961, 49921, 61681, 65537, 101377, 114689, 274177, 286721, 319489, 414721, 417793, 550801, 786433, 974849, 1130641, 1376257, 1489153, 1810433, 2424833, 3602561, 6700417
Offset: 1

Views

Author

Tom Mueller, Apr 16 2007

Keywords

Comments

There are infinitely many anti-elite primes.

Examples

			Let F_r:=2^(2^r)+1 = r-th Fermat number. Then a(2)=13 because for all r>1 we have F_r == 4 (mod 13) if r is even, resp. F_r == 10 (mod 13) if r is odd. Notice that 4 and 10 are quadratic residues modulo 13.
		

References

  • Alexander Aigner; Über Primzahlen, nach denen (fast) alle Fermatzahlen quadratische Nichtreste sind. Monatsh. Math. 101 (1986), pp. 85-93

Crossrefs

Cf. A102742.
Contains all Fermat prime factors of Fermat numbers (A023394) that are greater than 5.

Programs

  • PARI
    isAntiElite(n) = if(isprime(n) && n > 2, my(d = znorder(Mod(2,n)), StartPoint = valuation(d,2), LengthTest = znorder(Mod(2, d >> StartPoint))); for(i = StartPoint, StartPoint + LengthTest - 1, if(!issquare(Mod(2,n)^2^i + 1), return(0))); 1, n == 2) \\ Jianing Song, May 15 2024

A129802 Possible bases for Pepin's primality test for Fermat numbers.

Original entry on oeis.org

3, 5, 6, 7, 10, 12, 14, 20, 24, 27, 28, 39, 40, 41, 45, 48, 51, 54, 56, 63, 65, 75, 78, 80, 82, 85, 90, 91, 96, 102, 105, 108, 112, 119, 125, 126, 130, 147, 150, 156, 160, 164, 170, 175, 180, 182, 192, 204, 210, 216, 224, 238, 243, 245, 250, 252, 260, 291, 294, 300
Offset: 1

Views

Author

Max Alekseyev, Jun 14 2007, corrected Dec 29 2007. Thanks to Ant King for pointing out an error in the earlier version of this sequence

Keywords

Comments

Prime elements of this sequence are given by A102742.
From Jianing Song, May 15 2024: (Start)
Let m be an odd number and ord(2,m) = 2^r*d be the multiplicative order of 2 modulo m, where d is odd, then 2^2^n + 1 is congruent to one of 2^2^r + 1, 2^2^(r+1) + 1, ..., 2^2^(r+ord(2,d)-1) + 1 modulo m, so it suffices to check these ord(2,d) numbers.
Note that if m > 1, then m does not divide 2^2^n + 1 for n >= r, otherwise we would have 2^(2^n*d) = (2^ord(2,m))^2^(n-r) == 1 (mod m) and 2^(2^n*d) = (2^2^n)^d == (-1)^d == -1 (mod m). As a result, m is a term if and only if the Jacobi symbol ((2^2^n + 1)/m) is equal to -1 for m = r, r+1, ..., r+ord(2,d)-1.
By definition, a squarefree number that is a product of elite primes (A102742) or anti-elite primes (A128852) is a term if and only if its number of elite factors is odd. But a squarefree term can have factors that are neither elite nor anti-elite, the smallest being 551 = 19*29. (End)

Examples

			For n >= 2, we have 2^2^n + 1 == 170, 461, 17, 257, 519, 539 (mod 551) respectively for n == 0, 1, 2, 3, 4, 5 (mod 6). As we have (170/551) = (461/551) = (17/551) = (257/551) = (519/551) = (539/551) = -1, 551 is a term. - _Jianing Song_, May 19 2024
		

Crossrefs

Programs

  • PARI
    { isPepin(n) = local(s,S=Set(),t); n\=2^valuation(n,2); s=Mod(3,n); while( !setsearch(S,s), S=setunion(S,[s]); s=(s-1)^2+1); t=s; until( t==s, if( kronecker(lift(t),n)==1, return(0)); t=(t-1)^2+1);1 }
    for(n=2,1000,if(isPepin(n),print1(n,", ")))
    
  • PARI
    for(b=2, 300, k=b/2^valuation(b, 2); if(k>1, i=logint(k, 2); m=Mod(2, k); z=znorder(m); e=znorder(Mod(2, z/2^valuation(z, 2))); t=0; for(c=1, e, if(kronecker(lift(m^2^(i+c))+1, k)==-1, t++, break)); if(t==e, print1(b, ", ")))); \\ Arkadiusz Wesolowski, Sep 22 2021
    
  • PARI
    isA129802(n) = n = (n >> valuation(n,2)); my(d = znorder(Mod(2, n)), StartPoint = valuation(d, 2), LengthTest = znorder(Mod(2, d >> StartPoint))); for(i = StartPoint, StartPoint + LengthTest - 1, if(kronecker(lift(Mod(2, n)^2^i + 1), n) == 1, return(0))); 1 \\ Jianing Song, May 19 2024

Formula

A positive integer 2^k*m, where m is odd and k >= 0, belongs to this sequence iff the Jacobi symbol (F_n/m) = 1 for only a finite number of Fermat numbers F_n = A000215(n).

A372894 A positive integer 2^k*m, where m is odd and k >= 0, belongs to this sequence iff the Jacobi symbol (F_n/m) = -1 for only a finite number of Fermat numbers F_n = A000215(n).

Original entry on oeis.org

1, 2, 4, 8, 9, 13, 15, 16, 17, 18, 21, 25, 26, 30, 32, 34, 35, 36, 42, 49, 50, 52, 60, 64, 68, 70, 72, 81, 84, 97, 98, 100, 104, 117, 120, 121, 123, 128, 135, 136, 140, 144, 153, 162, 168, 169, 189, 193, 194, 195, 196, 200, 205, 208, 221, 225, 234, 240, 241, 242, 246, 255, 256, 257, 270, 272, 273, 280, 287, 288, 289
Offset: 1

Views

Author

Jianing Song, May 15 2024

Keywords

Comments

Can be seen as the opposite of A129802.
Let m be an odd number and ord(2,m) = 2^r*d be the multiplicative order of 2 modulo m, where d is odd, then 2^2^n + 1 is congruent to one of 2^2^r + 1, 2^2^(r+1) + 1, ..., 2^2^(r+ord(2,d)-1) + 1 modulo m, so it suffices to check these ord(2,d) numbers.
Note that if m > 1, then m does not divide 2^2^n + 1 for n >= r, otherwise we would have 2^(2^n*d) = (2^ord(2,m))^2^(n-r) == 1 (mod m) and 2^(2^n*d) = (2^2^n)^d == (-1)^d == -1 (mod m). As a result, m is a term if and only if the Jacobi symbol ((2^2^n + 1)/m) is equal to 1 for m = r, r+1, ..., r+ord(2,d)-1.
By definition, a squarefree number that is a product of elite primes (A102742) or anti-elite primes (A128852) is a term if and only if its number of elite factors is even. But a squarefree term can have factors that are neither elite nor anti-elite, the smallest being 341 = 11*31.
Contains divisors of Fermat numbers >= 17 (A307843 \ {3,5}) since they are products of elite primes.

Examples

			For n >= 1, we have 2^2^n + 1 == 65, 5, 17, 257 (mod 341) respectively for n == 0, 1, 2, 3 (mod 4). As we have (65/341) = (5/341) = (17/341) = (257/341) = 1, 341 is a term.
		

Crossrefs

Prime elements of this sequence are given by A128852.

Programs

  • PARI
    isA372894(n) = n = (n >> valuation(n,2)); my(d = znorder(Mod(2, n)), StartPoint = valuation(d, 2), LengthTest = znorder(Mod(2, d >> StartPoint))); for(i = StartPoint, StartPoint + LengthTest - 1, if(kronecker(lift(Mod(2, n)^2^i + 1), n) == -1, return(0))); 1

A348062 Primes p such that the length of the (eventual) period of the sequence {2^(2^k) mod p: k >= 0} is odd.

Original entry on oeis.org

2, 3, 5, 17, 29, 43, 47, 113, 127, 179, 197, 257, 277, 283, 293, 317, 383, 439, 449, 467, 479, 509, 569, 641, 659, 719, 797, 863, 1013, 1069, 1289, 1373, 1399, 1427, 1439, 1487, 1579, 1627, 1657, 1753, 1823, 1913, 1933, 1949, 2063, 2203, 2207, 2213, 2273, 2339, 2351
Offset: 1

Views

Author

Arkadiusz Wesolowski, Sep 26 2021

Keywords

Comments

Of these numbers only 3 and 5 are elite primes (A102742). (Aigner)
Every prime of the form A036259(n)*2^m + 1, with m, n >= 1, is in this sequence.

Crossrefs

Supersequence of A023394.
Cf. A102742 (elite primes), A256607.

Programs

  • PARI
    L=List([2]); forprime(p=3, 2351, z=znorder(Mod(2, p)); if(znorder(Mod(2, z/2^valuation(z, 2)))%2, listput(L, p))); Vec(L)
Showing 1-8 of 8 results.