A372896 Squarefree terms of A372894 whose prime factors are neither elite (A102742) nor anti-elite (A128852).
1, 341, 671, 1891, 2117, 3277, 4033, 5461, 8249, 12557, 13021, 14531, 19171, 24811, 31609, 32777, 33437, 40951, 46139, 48929, 49981, 50737, 73279, 80581, 84169, 100253, 116143, 130289, 135923, 136271, 149437, 175577, 179783, 194417, 252361, 272491, 342151, 343027, 376169, 390641
Offset: 1
Keywords
Programs
-
PARI
isA372896(n) = { if(n%2 && issquarefree(n) && isA372894(n), if(n==1, return(1)); my(f = factor(n)~[1,]); \\ See A372894 for its program for(i=1, #f, my(p=f[i], d = znorder(Mod(2, p)), StartPoint = valuation(d, 2), LengthTest = znorder(Mod(2, d >> StartPoint)), flag = 0); \\ To check if p = f[i] is an elite prime or an anti-elite prime, it suffices to check (2^2^i + 1) modulo p for StartPoint <= i <= StartPoint + LengthTest - 1; see A129802 or A372894 for(j = StartPoint+1, StartPoint + LengthTest - 1, if(issquare(Mod(2, p)^2^j + 1) != issquare(Mod(2, p)^2^StartPoint + 1), flag = 1; break())); if(flag == 0, return(0))); 1, 0) }
Comments