cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A349678 Primes p such that the multiplicative order of 2 modulo k is odd, where k is the largest odd divisor of p - 1.

Original entry on oeis.org

2, 3, 5, 17, 29, 47, 113, 179, 197, 257, 293, 317, 383, 449, 467, 479, 509, 569, 659, 719, 797, 863, 1289, 1373, 1427, 1439, 1487, 1823, 1913, 1949, 2063, 2207, 2213, 2273, 2339, 2417, 2447, 2579, 2633, 2879, 2909, 3023, 3119, 3137, 3167, 3347, 3359, 3449, 3557
Offset: 1

Views

Author

Arkadiusz Wesolowski, Nov 24 2021

Keywords

Crossrefs

Subsequence of A348062.
Cf. A036259.

Programs

  • Maple
    filter:= proc(p) local k;
      if not isprime(p) then return false fi;
      k:= (p-1)/2^padic:-ordp(p-1,2);
      numtheory:-order(2,k)::odd
    end proc:
    select(filter, [2,seq(i,i=3..10000,2)]); # Robert Israel, Feb 02 2025
  • Mathematica
    Select[Range[3600], PrimeQ[#] && OddQ[MultiplicativeOrder[2, (# - 1)/2^IntegerExponent[# - 1, 2]]] &] (* Amiram Eldar, Nov 26 2021 *)
  • PARI
    isok(p) = isprime(p) && znorder(Mod(2, (p-1)/2^valuation(p-1,2)))%2;
Showing 1-1 of 1 results.