A128899 Riordan array (1,(1-2x-sqrt(1-4x))/(2x)).
1, 0, 1, 0, 2, 1, 0, 5, 4, 1, 0, 14, 14, 6, 1, 0, 42, 48, 27, 8, 1, 0, 132, 165, 110, 44, 10, 1, 0, 429, 572, 429, 208, 65, 12, 1, 0, 1430, 2002, 1638, 910, 350, 90, 14, 1, 0, 4862, 7072, 6188, 3808, 1700, 544, 119, 16, 1, 0, 16796, 25194, 23256, 15504, 7752, 2907, 798, 152, 18, 1
Offset: 0
Examples
Triangle begins: 1; 0, 1; 0, 2, 1; 0, 5, 4, 1; 0, 14, 14, 6, 1; 0, 42, 48, 27, 8, 1; 0, 132, 165, 110, 44, 10, 1; 0, 429, 572, 429, 208, 65, 12, 1; 0, 1430, 2002, 1638, 910, 350, 90, 14, 1; 0, 4862, 7072, 6188, 3808, 1700, 544, 119, 16, 1; 0, 16796, 25194, 23256, 15504, 7752, 2907, 798, 152, 18, 1; ...
Links
- Michael De Vlieger, Table of n, a(n) for n = 0..11475 (rows 0 <= n <= 150, flattened)
- Paul Barry, A Note on Riordan Arrays with Catalan Halves, arXiv:1912.01124 [math.CO], 2019.
- Paul Barry, Chebyshev moments and Riordan involutions, arXiv:1912.11845 [math.CO], 2019.
Programs
-
Maple
# Uses function PMatrix from A357368. PMatrix(10, n -> binomial(2*n,n)/(n+1)); # Peter Luschny, Oct 19 2022
-
Mathematica
T[n_, n_] := 1; T[, 0] = 0; T[n, k_] /; 0 < k < n := T[n, k] = T[n - 1, k - 1] + 2 T[n - 1, k] + T[n - 1, k + 1]; T[, ] = 0; Table[T[n, k], {n, 0, 10}, {k, 0, n}] (* Jean-François Alcover, Jun 14 2019 *)
-
PARI
T(n, k) = binomial(2*n-2, n-k)-binomial(2*n-2, n-k-2); \\ Seiichi Manyama, Mar 24 2025
-
Sage
@cached_function def T(k,n): if k==n: return 1 if k==0: return 0 return sum(catalan_number(i)*T(k-1,n-i) for i in (1..n-k+1)) A128899 = lambda n,k: T(k,n) for n in (0..10): print([A128899(n,k) for k in (0..n)]) # Peter Luschny, Mar 12 2016
Formula
T(n,k) = A039598(n-1,k-1) for n >= 1, k >= 1; T(n,0)=0^n.
T(n,k) = T(n-1,k-1) + 2*T(n-1,k) + T(n-1,k+1) for k >= 1, T(n,0)=0^n, T(n,k)=0 if k > n.
T(n,k) + T(n,k+1) = A039599(n,k). - Philippe Deléham, Sep 12 2007
Extensions
Typo in data corrected by Jean-François Alcover, Jun 14 2019
Comments