cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A128899 Riordan array (1,(1-2x-sqrt(1-4x))/(2x)).

Original entry on oeis.org

1, 0, 1, 0, 2, 1, 0, 5, 4, 1, 0, 14, 14, 6, 1, 0, 42, 48, 27, 8, 1, 0, 132, 165, 110, 44, 10, 1, 0, 429, 572, 429, 208, 65, 12, 1, 0, 1430, 2002, 1638, 910, 350, 90, 14, 1, 0, 4862, 7072, 6188, 3808, 1700, 544, 119, 16, 1, 0, 16796, 25194, 23256, 15504, 7752, 2907, 798, 152, 18, 1
Offset: 0

Views

Author

Philippe Deléham, Apr 21 2007

Keywords

Comments

Let the sequence A(n) = [0/1, 2/1, 1/2, 3/2, 2/3, 4/3, ...] defined by a(2n)=n/(n+1) and a(2n+1)=(n+2)/(n+1). T(n,k) is the triangle read by rows given by A(n) DELTA A000007 where DELTA is the operator defined in A084938.
T is the convolution triangle of the Catalan numbers (see A357368). - Peter Luschny, Oct 19 2022

Examples

			Triangle begins:
  1;
  0,     1;
  0,     2,     1;
  0,     5,     4,     1;
  0,    14,    14,     6,     1;
  0,    42,    48,    27,     8,    1;
  0,   132,   165,   110,    44,   10,    1;
  0,   429,   572,   429,   208,   65,   12,  1;
  0,  1430,  2002,  1638,   910,  350,   90,  14,   1;
  0,  4862,  7072,  6188,  3808, 1700,  544, 119,  16,  1;
  0, 16796, 25194, 23256, 15504, 7752, 2907, 798, 152, 18, 1;
  ...
		

Crossrefs

Row sums give A088218.

Programs

  • Maple
    # Uses function PMatrix from A357368.
    PMatrix(10, n -> binomial(2*n,n)/(n+1)); # Peter Luschny, Oct 19 2022
  • Mathematica
    T[n_, n_] := 1; T[, 0] = 0; T[n, k_] /; 0 < k < n := T[n, k] = T[n - 1, k - 1] + 2 T[n - 1, k] + T[n - 1, k + 1]; T[, ] = 0;
    Table[T[n, k], {n, 0, 10}, {k, 0, n}] (* Jean-François Alcover, Jun 14 2019 *)
  • PARI
    T(n, k) = binomial(2*n-2, n-k)-binomial(2*n-2, n-k-2); \\ Seiichi Manyama, Mar 24 2025
  • Sage
    @cached_function
    def T(k,n):
        if k==n: return 1
        if k==0: return 0
        return sum(catalan_number(i)*T(k-1,n-i) for i in (1..n-k+1))
    A128899 = lambda n,k: T(k,n)
    for n in (0..10): print([A128899(n,k) for k in (0..n)]) # Peter Luschny, Mar 12 2016
    

Formula

T(n,k) = A039598(n-1,k-1) for n >= 1, k >= 1; T(n,0)=0^n.
T(n,k) = T(n-1,k-1) + 2*T(n-1,k) + T(n-1,k+1) for k >= 1, T(n,0)=0^n, T(n,k)=0 if k > n.
T(n,k) + T(n,k+1) = A039599(n,k). - Philippe Deléham, Sep 12 2007

Extensions

Typo in data corrected by Jean-François Alcover, Jun 14 2019