A128905 Numbers k such that the k-th triangular number has exactly four distinct prime factors.
20, 51, 59, 60, 65, 68, 69, 76, 77, 83, 91, 92, 105, 110, 114, 115, 123, 129, 131, 139, 154, 156, 165, 182, 185, 186, 187, 194, 210, 212, 221, 227, 228, 235, 236, 237, 246, 254, 258, 265, 266, 267, 273, 276, 286, 290, 291, 307, 309, 318, 321, 322, 330, 345
Offset: 1
Keywords
Examples
In order of increasing p (the least prime factor of T(k)): a(1) = 20 because T(20) = 210 = 2* 3* 5* 7, a(5) = 65 because T(65) = 2145 = 3* 5*11*13, a(21) = 154 because T(154) = 11935 = 5* 7*11*31, a(45) = 286 because T(286) = 41041 = 7*11*13*41, a(143)= 781 because T(781) = 305371 = 11*17*23*71, a(91) = 493 because T(493) = 121771 = 13*17*19*29, etc.
Programs
-
Mathematica
lim=346;tn=Rest[Array[ #*(# - 1)/2 &,lim]];Select[Range[lim-1],PrimeNu[tn[[#]]]==PrimeOmega[tn[[#]]]==4&] (* James C. McMahon, Jan 12 2025 *)
Formula
a(n)=k and T(k)=k*(k+1)/2=p*q*r*s for some k, p, q, r, s where T(k) is a triangular number and p, q, r, s are distinct primes.
Comments