cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A128915 Triangle read by rows: row n gives coefficients (lowest degree first) of P_n(x), where P_0(x) = P_1(x) = 1; P_n(x) = P_{n-1}(x) + x^n*P_{n-2}(x).

Original entry on oeis.org

1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 2, 1, 2, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 2, 2, 2, 2, 2, 1, 2, 1, 1, 1, 1, 0, 1, 1, 1, 1, 2, 2, 3, 2, 3, 2, 3, 2, 3, 2, 2, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 2, 2, 3, 3, 3, 3, 4, 3, 4, 4, 4, 3, 3, 2, 2, 2, 1, 1
Offset: 0

Views

Author

N. J. A. Sloane, Apr 24 2007

Keywords

Comments

P_n(x) appears to have degree A035106(n).

Examples

			Triangle begins:
1
1
1,0,1
1,0,1,1
1,0,1,1,1,0,1
1,0,1,1,1,1,1,1,1
1,0,1,1,1,1,2,1,2,1,1,0,1
1,0,1,1,1,1,2,2,2,2,2,1,2,1,1,1
1,0,1,1,1,1,2,2,3,2,3,2,3,2,3,2,2,1,1,0,1
		

Crossrefs

Rows converge to A003114 (coefficients in expansion of the first Rogers-Ramanujan identities). Cf. A119469.
Rows converge to A003106. Cf. A127836, A119469.

Programs

  • Maple
    P[0]:=1; P[1]:=1; d:=[0,0]; M:=14; for n from 2 to M do P[n]:=expand(P[n-1]+q^n*P[n-2]);
    lprint(seriestolist(series(P[n],q,M^2))); d:=[op(d),degree(P[n],q)]; od: d;