A128915 Triangle read by rows: row n gives coefficients (lowest degree first) of P_n(x), where P_0(x) = P_1(x) = 1; P_n(x) = P_{n-1}(x) + x^n*P_{n-2}(x).
1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 2, 1, 2, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 2, 2, 2, 2, 2, 1, 2, 1, 1, 1, 1, 0, 1, 1, 1, 1, 2, 2, 3, 2, 3, 2, 3, 2, 3, 2, 2, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 2, 2, 3, 3, 3, 3, 4, 3, 4, 4, 4, 3, 3, 2, 2, 2, 1, 1
Offset: 0
Examples
Triangle begins: 1 1 1,0,1 1,0,1,1 1,0,1,1,1,0,1 1,0,1,1,1,1,1,1,1 1,0,1,1,1,1,2,1,2,1,1,0,1 1,0,1,1,1,1,2,2,2,2,2,1,2,1,1,1 1,0,1,1,1,1,2,2,3,2,3,2,3,2,3,2,2,1,1,0,1
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..9523 (rows n=0..47 of triangle, flattened).
- A. V. Sills, Finite Rogers-Ramanujan type identities, Electron. J. Combin. 10 (2003), Research Paper 13, 122 pp. See Identity 3-14, p. 25.
- Eric Weisstein's World of Mathematics, Rogers-Ramanujan Continued Fraction
Crossrefs
Programs
-
Maple
P[0]:=1; P[1]:=1; d:=[0,0]; M:=14; for n from 2 to M do P[n]:=expand(P[n-1]+q^n*P[n-2]); lprint(seriestolist(series(P[n],q,M^2))); d:=[op(d),degree(P[n],q)]; od: d;
Comments