A128957 a(n) is equal to the number of positive integers m less than or equal to 10^n such that m is not divisible by at least one of the primes 2,5 and is not divisible by at least one of the primes 3,7.
86, 857, 8571, 85715, 857142, 8571429, 85714286, 857142857, 8571428571, 85714285715, 857142857142, 8571428571429, 85714285714286, 857142857142857, 8571428571428571, 85714285714285715, 857142857142857142
Offset: 2
Keywords
Links
- Vincenzo Librandi, Table of n, a(n) for n = 2..1000
- Milan Janjic, Enumerative Formulas for Some Functions on Finite Sets
Crossrefs
Cf. A092695.
Programs
-
Magma
[10^n-Floor(10^n/10)-Floor(10^n/21)+Floor(10^n/210): n in [2..20]]; // Vincenzo Librandi, Oct 02 2011
-
Maple
f := n->10^n-floor(10^n/10)-floor(10^n/21)+floor(10^n/210);
Formula
a(n) = 10^n - floor(10^n/10) - floor(10^n/21) + floor(10^n/210).
Conjectures from Colin Barker, Nov 06 2017: (Start)
G.f.: x^2*(86 + 83*x + 84*x^2 + 89*x^3 + 81*x^4 + 90*x^5) / ((1 + x)*(1 - 10*x)*(1 - x + x^2)*(1 + x + x^2)).
a(n) = 9*a(n-1) + 9*a(n-2) + 9*a(n-3) + 9*a(n-4) + 9*a(n-5) + 10*a(n-6) for n>7.
(End)