cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A128959 a(n) is equal to the number of positive integers m less than or equal to 10^n such that m is not divisible by at least one of the primes 2,3 and is not divisible by at least one of the primes 5,7.

Original entry on oeis.org

82, 810, 8096, 80953, 809524, 8095239, 80952382, 809523810, 8095238096, 80952380953, 809523809524, 8095238095239, 80952380952382, 809523809523810, 8095238095238096, 80952380952380953, 809523809523809524, 8095238095238095239, 80952380952380952382
Offset: 2

Views

Author

Milan Janjic, Apr 28 2007

Keywords

Crossrefs

Cf. A092695.

Programs

  • Magma
    [10^n-Floor(10^n/6)-Floor(10^n/35)+Floor(10^n/210): n in [2..20]]; // Vincenzo Librandi, Oct 02 2011
    
  • Maple
    f := n->10^n-floor(10^n/2)-floor(10^n/35)+floor(10^n/210);
  • PARI
    Vec(-x^2*(90*x^5-89*x^4+95*x^3-88*x^2+92*x-82)/((x-1)*(10*x-1)*(x^2-x+1)*(x^2+x+1)) + O(x^30)) \\ Colin Barker, Nov 17 2015

Formula

a(n) = 10^n-floor(10^n/6)-floor(10^n/35)+floor(10^n/210).
From Colin Barker, Nov 17 2015: (Start)
a(n) = 11*a(n-1)-11*a(n-2)+11*a(n-3)-11*a(n-4)+11*a(n-5)-10*a(n-6) for n>7.
G.f.: -x^2*(90*x^5-89*x^4+95*x^3-88*x^2+92*x-82) / ((x-1)*(10*x-1)*(x^2-x+1)*(x^2+x+1)).
(End)