A129093 a(n) = A030067(2^(n+1) - 3) for n>=1, where A030067 is the semi-Fibonacci numbers.
1, 3, 11, 53, 361, 3707, 60299, 1611917, 72878969, 5702474099, 786309124267, 193799682039045, 86339557133251369, 70158421732175677771, 104756929383173098118827, 289215969367883566518863261
Offset: 1
Keywords
Examples
This sequence also equals the row sums of the triangle formed from the semi-Fibonacci numbers (A030067) with 2^n terms in row n for n>=0: n=0: 1; n=1: 1, 2; n=2: 1, 3, 2, 5; n=3: 1, 6, 3, 9, 2, 11, 5, 16; n=4: 1, 17, 6, 23, 3, 26, 9, 35, 2, 37, 11, 48, 5, 53, 16, 69; ... and the rightmost border equals A129092(n) = A030067(2^n - 1). The semi-Fibonacci numbers (A030067) start: [1, (1), 2, 1, (3), 2, 5, 1, 6, 3, 9, 2, (11), 5, 16, 1, ...], and obey the recurrence: A030067(n) = A030067(n/2) when n is even; and A030067(n) = A030067(n-1) + A030067(n-2) when n is odd. This sequence also equals row sums of matrix square A129100^2: 1; 2, 1; 6, 4, 1; 24, 20, 8, 1; 136, 136, 72, 16, 1; 1162, 1360, 880, 272, 32, 1; ...
Programs
-
PARI
/* As row sums of the matrix square of triangle A129100: */ a(n)=local(A=Mat(1),B);for(m=1,n+1,B=matrix(m,m);for(r=1,m,for(c=1,r, if(r==c || r==1 || r==2, B[r,c]=1, if(c==1, B[r,1]=sum(i=1,r-1,A[r-1,i]), B[r,c]=(A^(2^(c-1)))[r-c+1,1])))); A=B); sum(k=1,n,(A^2)[n,k]) for(n=1,20,print1(a(n),", "))