A129094 a(n) = A030067(2^n + 2^(n-1) - 1) for n>=1, where A030067 gives the semi-Fibonacci numbers.
1, 3, 9, 35, 189, 1523, 19409, 407067, 14448821, 886912635, 95777365753, 18445977557011, 6405629912921517, 4047190499790323395, 4687597187390655089313, 10017007133285072336267467
Offset: 1
Keywords
Examples
This sequence equals the central terms of the triangle formed from the semi-Fibonacci numbers (A030067) with 2^n terms in row n for n>=1: n=0: 1; n=1: (1), 2; n=2: 1, (3), 2, 5; n=3: 1, 6, 3, (9), 2, 11, 5, 16; n=4: 1, 17, 6, 23, 3, 26, 9, (35), 2, 37, 11, 48, 5, 53, 16, 69; ... The semi-Fibonacci numbers (A030067) start: [1, (1), 2, 1, (3), 2, 5, 1, 6, 3, (9), 2, 11, 5, 16, 1, ...], and obey the recurrence: A030067(n) = A030067(n/2) when n is even; and A030067(n) = A030067(n-1) + A030067(n-2) when n is odd.
Programs
-
PARI