A129104 Triangle T, read by rows, where row n (shifted left) of T equals row 0 of matrix power T^n for n>=0.
1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 5, 6, 4, 1, 1, 16, 24, 20, 8, 1, 1, 69, 136, 136, 72, 16, 1, 1, 430, 1162, 1360, 880, 272, 32, 1, 1, 4137, 15702, 21204, 16032, 6240, 1056, 64, 1, 1, 64436, 346768, 537748, 461992, 214336, 46784, 4160, 128, 1, 1, 1676353, 12836904
Offset: 0
Examples
Triangle T begins: 1, 1; 1, 1, 1; 1, 2, 2, 1; 1, 5, 6, 4, 1; 1, 16, 24, 20, 8, 1; 1, 69, 136, 136, 72, 16, 1; ... where row 0 of matrix power T^k forms row k of T shift left, as illustrated below. For row 2: the matrix square T^2 begins: 2, 2, 1; 3, 4, 3, 1; 6, 12, 12, 6, 1; 17, 54, 65, 42, 12, 1; 70, 362, 512, 400, 156, 24, 1; 431, 3708, 6223, 5656, 2744, 600, 48, 1; ... and row 0 of T^2 equals row 2 of T shift left: [2, 2, 1]. For row 3: the matrix cube T^3 begins: 5, 6, 4, 1; 11, 18, 16, 7, 1; 37, 88, 96, 56, 14, 1; 191, 672, 860, 609, 210, 28, 1; 1525, 8038, 11956, 9856, 4256, 812, 56, 1; ... and row 0 of T^3 equals row 3 of T shift left: [5, 6, 4, 1]. For row 4: T^4 begins: 16, 24, 20, 8, 1; 53, 112, 116, 64, 15, 1; 292, 890, 1088, 736, 240, 30, 1; 2571, 11350, 16056, 12664, 5185, 930, 60, 1; ... and row 0 of T^4 equals row 4 of T shift left: [16, 24, 20, 8, 1].
Crossrefs
Programs
-
PARI
T(n,k)=local(A=[1,1;1,1],B);for(m=1,n+1,B=matrix(m+1,m+1); for(r=1,m,for(c=1,r+1,if(r==c-1 || c==1,B[r,c]=1, B[r,c]=(A^(r-1))[1,c-1])));A=B); return(A[n+1, k+1])
Comments