A129117 Numbers that appear exactly five times in A101402. (Also indices of fives in A101403.).
727, 2181, 3635, 5089, 6543, 7997, 9451, 10905, 12358, 13812, 15266, 16720, 18174, 19628, 21082, 22536, 23989, 25443, 26897, 28351, 29805, 31259, 32713, 34167, 35620, 37074, 38528, 39982, 41436, 42890, 44344, 45798, 47250, 48704, 50158
Offset: 1
Examples
a(1) = 727 since A101402(2045) = A101402(2046) = A101402(2047) = A101402(2048) = A101402(2049) = 727. a(1) = 727 since A101403(727) = 5.
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..1000
Programs
-
Haskell
import Data.List (elemIndices) a129117 n = a129117_list !! (n-1) a129117_list = elemIndices 5 a101403M_list -- Reinhard Zumkeller, Aug 28 2014
-
Mathematica
A101402[0] = 0; A101402[1] = 1; A101402[n_] := A101402[n] = A101402[2^(Floor[Log[2, n - 1]])] + A101402[n - 1 - 2^(Floor[Log[2, n - 1]])]; TheList = Table[A101402[i], {i, 0, 203000}]; TheList2 = Union[TheList]; A101403 = Table[Count[TheList, i], {i, 0, Last[TheList]}]; TheSeq = Delete[Union[Table[ If[TheList[[i]] == TheList[[i + 4]], TheList[[i]]], {i, 1, Length[TheList] - 4}]], -1] Count[A101403, 5] Length[TheSeq]
Formula
A101403(a(n)) = 5.
Comments