cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A129134 Expansion of (1 - phi(-q) * phi(-q^2)) / 2 in powers of q where phi() is a Ramanujan theta function.

Original entry on oeis.org

1, 1, -2, -1, 0, 2, 0, -1, 3, 0, -2, -2, 0, 0, 0, -1, 2, 3, -2, 0, 0, 2, 0, -2, 1, 0, -4, 0, 0, 0, 0, -1, 4, 2, 0, -3, 0, 2, 0, 0, 2, 0, -2, -2, 0, 0, 0, -2, 1, 1, -4, 0, 0, 4, 0, 0, 4, 0, -2, 0, 0, 0, 0, -1, 0, 4, -2, -2, 0, 0, 0, -3, 2, 0, -2, -2, 0, 0, 0, 0, 5, 2, -2, 0, 0, 2, 0, -2, 2, 0, 0, 0, 0, 0, 0, -2, 2, 1, -6, -1, 0, 4, 0, 0, 0
Offset: 1

Views

Author

Michael Somos, Mar 30 2007

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
For n nonzero, a(n) is nonzero if and only if n is in A002479.

Examples

			G.f. = q + q^2 - 2*q^3 - q^4 + 2*q^6 - q^8 + 3*q^9 - 2*q^11 - 2*q^12 - q^16 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := If[ n < 1, 0, (-1)^Quotient[ n - 1, 2] DivisorSum[n, KroneckerSymbol[-2, #] &]]; (* Michael Somos, Jun 09 2015 *)
    a[ n_] := SeriesCoefficient[ (1 - EllipticTheta[ 4, 0, q] EllipticTheta[ 4, 0, q^2]) / 2 , {q, 0, n}]; (* Michael Somos, Jun 09 2015 *)
    a[ n_] := SeriesCoefficient[ (1 - QPochhammer[ q]^2 QPochhammer[ q^2] / QPochhammer[ q^4]) / 2 , {q, 0, n}]; (* Michael Somos, Jun 09 2015 *)
  • PARI
    {a(n) = if( n<1, 0, (-1)^((n-1)\2) * sumdiv(n, d, kronecker( -2, d)))};
    
  • PARI
    {a(n) = local(A); if( n<1, 0, A = x * O(x^n); polcoeff( (1 - eta(x + A)^2 * eta(x^2 + A) / eta(x^4 + A)) / 2, n))};

Formula

Expansion of (1 - eta(q)^2 * eta(q^2) / eta(q^4)) / 2 in powers of q.
G.f.: (1 - Product_{k>0} (1 - x^k)^2 / (1 + x^(2*k)) )/2.
a(n) = A002325(n) * (-1)^floor((n-1)/2). A082564(n) = -2 * a(n) unless n=0.
a(3*n + 1) = A258747(n). a(3*n + 2) = A258764(n). - Michael Somos, Jun 09 2015