A129154 Triangle read by rows: T(n,k) is the number of skew Dyck paths of semilength n and having k primitive Dyck factors (n >= 0; 0 <= k <= n).
1, 0, 1, 1, 1, 1, 4, 3, 2, 1, 15, 11, 6, 3, 1, 59, 41, 22, 10, 4, 1, 241, 159, 84, 38, 15, 5, 1, 1011, 639, 331, 150, 60, 21, 6, 1, 4326, 2640, 1342, 606, 246, 89, 28, 7, 1, 18797, 11146, 5570, 2500, 1023, 380, 126, 36, 8, 1, 82685, 47884, 23567, 10503, 4312, 1630
Offset: 0
Examples
T(4,2)=6 because we have (UD)(UD)UUDL, (UD)(UUDUDD), (UD)(UUUDDD), (UUDD)(UUDD), (UUDUDD)(UD) and (UUUDDD)(UD) (the primitive Dyck factors are shown between parentheses). Triangle starts: 1; 0, 1; 1, 1, 1; 4, 3, 2, 1; 15, 11, 6, 3, 1;
Links
- E. Deutsch, E. Munarini, S. Rinaldi, Skew Dyck paths, J. Stat. Plann. Infer. 140 (8) (2010) 2192-2203.
Programs
-
Maple
G:=(3-3*z-sqrt(1-6*z+5*z^2))/(2-t+z+(t-1)*sqrt(1-4*z)+sqrt(1-6*z+5*z^2)): Gser:=simplify(series(G,z=0,14)): for n from 0 to 11 do P[n]:=sort(coeff(Gser,z,n)) od: for n from 0 to 11 do seq(coeff(P[n],t,j),j=0..n) od; # yields sequence in triangular form
Comments