A129156
Number of primitive Dyck factors in all skew Dyck paths of semilength n.
Original entry on oeis.org
0, 1, 3, 10, 36, 136, 532, 2139, 8796, 36859, 156946, 677514, 2959669, 13063493, 58184838, 261230814, 1181144792, 5374078726, 24588562675, 113067256235, 522270436044, 2422244159067, 11275548912967, 52663412854571
Offset: 0
a(2)=3 because in all skew Dyck paths of semilength 3, namely (UD)(UD), (UUDD) and UUDL, we have altogether 3 primitive Dyck factors (shown between parentheses).
-
G:=(3-3*z-sqrt(1-6*z+5*z^2))*(1-sqrt(1-4*z))/(1+z+sqrt(1-6*z+5*z^2))^2: Gser:=series(G,z=0,30): seq(coeff(Gser,z,n),n=0..27);
-
CoefficientList[Series[(3-3*x-Sqrt[1-6*x+5*x^2])*(1-Sqrt[1-4*x])/ (1+x+Sqrt[1-6*x+5*x^2])^2, {x, 0, 20}], x] (* Vaclav Kotesovec, Mar 20 2014 *)
-
z='z+O('z^25); concat([0], Vec((3-3*z-sqrt(1-6*z+5*z^2))*(1-sqrt(1-4*z))/(1 +z + sqrt(1 - 6*z + 5*z^2))^2)) \\ G. C. Greubel, Feb 09 2017
A129157
Triangle read by rows: T(n,k) is the number of skew Dyck paths of semilength n and having k primitive non-Dyck factors (n>=0; 0<=k<=floor((n+1)/3)).
Original entry on oeis.org
1, 1, 2, 1, 5, 5, 14, 22, 42, 94, 1, 132, 400, 11, 429, 1709, 81, 1430, 7351, 503, 1, 4862, 31857, 2851, 17, 16796, 139100, 15297, 176, 58786, 611781, 79228, 1440, 1, 208012, 2709230, 400694, 10259, 23, 742900, 12075248, 1993226, 66774, 307, 2674440
Offset: 0
T(3,1) = 5 because we have UD(UUDL), (UUUDLD), (UUDUDL), (UUUDDL) and (UUUDLL);
T(5,2) = 1 because we have (UUUDLD)(UUDL) (the primitive non-Dyck factors are shown between parentheses).
Triangle starts:
1;
1;
2, 1;
5, 5;
14, 22;
42, 94, 1;
132, 400, 11;
- E. Deutsch, E. Munarini, S. Rinaldi, Skew Dyck paths, J. Stat. Plann. Infer. 140 (8) (2010) 2192-2203
-
G:=(2+t-3*t*z-t*sqrt(1-6*z+5*z^2))/(1+t*z+(1-t)*sqrt(1-4*z)+t*sqrt(1-6*z+5*z^2)):
Gser:=simplify(series(G,z=0,18)):
for n from 0 to 15 do P[n]:=sort(coeff(Gser,z,n)) od:
for n from 0 to 15 do seq(coeff(P[n],t,j),j=0..floor((n+1)/3)) od;
# yields sequence in triangular form
A129155
Number of skew Dyck paths of semilength n that have no primitive Dyck factors.
Original entry on oeis.org
1, 0, 1, 4, 15, 59, 241, 1011, 4326, 18797, 82685, 367410, 1646494, 7432270, 33761322, 154213566, 707882503, 3263713148, 15107319268, 70182332975, 327111450097, 1529226524057, 7168880978609, 33693179852563
Offset: 0
a(3)=4 because we have UUUDLD, UUDUDL, UUUDDL and UUUDLL.
-
G:=(3-3*z-sqrt(1-6*z+5*z^2))/(2+z-sqrt(1-4*z)+sqrt(1-6*z+5*z^2)): Gser:=series(G,z=0,32): seq(coeff(Gser,z,n),n=0..28);
-
CoefficientList[Series[(3-3*x-Sqrt[1-6*x+5*x^2])/(2+x-Sqrt[1-4*x]+Sqrt[1-6*x+5*x^2]), {x, 0, 20}], x] (* Vaclav Kotesovec, Mar 20 2014 *)
-
z='z+O('z^50); Vec((3-3*z-sqrt(1-6*z+5*z^2))/(2+z-sqrt(1-4*z)+sqrt(1-6*z+5*z^2))) \\ G. C. Greubel, Mar 20 2017
Showing 1-3 of 3 results.
Comments