A129158 Number of primitive non-Dyck factors in all skew Dyck paths of semilength n.
0, 0, 1, 5, 22, 96, 422, 1871, 8360, 37610, 170222, 774561, 3541487, 16263250, 74981226, 346957923, 1610847944, 7501970397, 35038158569, 164083453482, 770312822822, 3624741537711, 17093452878067, 80773023036909
Offset: 0
Keywords
Examples
a(2)=1 because in all skew Dyck paths of semilength 3, namely UDUD, UUDD and (UUDL), we have altogether 1 primitive non-Dyck factor (shown between parentheses).
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- E. Deutsch, E. Munarini, S. Rinaldi, Skew Dyck paths, J. Stat. Plann. Infer. 140 (8) (2010) 2191-2203
Programs
-
Maple
G:=(1-5*z+3*(1-z)*sqrt(1-4*z)-3*sqrt(1-6*z+5*z^2)-sqrt((1-4*z)*(1-6*z+5*z^2)))/(1+z+sqrt(1-6*z+5*z^2))^2: Gser:=series(G,z=0,32): seq(coeff(Gser,z,n),n=0..27);
-
Mathematica
CoefficientList[Series[(1-5*x+3*(1-x)*Sqrt[1-4*x]-3*Sqrt[1-6*x+5*x^2]-Sqrt[(1-4*x)*(1-6*x+5*x^2)])/(1+x+Sqrt[1-6*x+5*x^2])^2, {x, 0, 20}], x] (* Vaclav Kotesovec, Mar 20 2014 *)
-
PARI
z='z+O('z^25); concat([0,0], Vec((1-5*z+3*(1-z)*sqrt(1-4*z)-3*sqrt(1-6*z+5*z^2) - sqrt((1-4*z)*(1-6*z+5*z^2))) /(1+z+ sqrt(1-6*z+5*z^2) )^2)) \\ G. C. Greubel, Feb 09 2017
Formula
a(n) = Sum_{k=0,..,n} k*A129157(n,k).
G.f.: (1-5*z+3*(1-z)*sqrt(1-4*z)-3*sqrt(1-6*z+5*z^2) - sqrt((1-4*z)*(1-6*z+5*z^2)))/(1+z+sqrt(1-6*z+5*z^2))^2.
a(n) ~ (3*sqrt(5)+5) * 5^(1+n) / (36*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Mar 20 2014
Comments