A129166 Number of skew Dyck paths of semilength n with no base pyramids.
1, 0, 1, 5, 19, 73, 292, 1203, 5065, 21697, 94274, 414514, 1840981, 8247011, 37220261, 169079113, 772489020, 3547371679, 16364309243, 75799327800, 352402156770, 1643878188646, 7691841654538, 36091803172733
Offset: 0
Keywords
Examples
a(2)=1 because we have UUDL.
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- E. Deutsch, E. Munarini, S. Rinaldi, Skew Dyck paths, J. Stat. Plann. Infer. 140 (8) (2010) 2191-2203
Crossrefs
Cf. A129165.
Programs
-
Maple
G:=(1-z)*(3-3*z-sqrt(1-6*z+5*z^2))/(2-(1-z)*(1-z-sqrt(1-6*z+5*z^2))): Gser:=series(G,z=0,30): seq(coeff(Gser,z,n),n=0..27);
-
Mathematica
CoefficientList[Series[(1-x)*(3-3*x-Sqrt[1-6*x+5*x^2])/(2-(1-x)*(1-x-Sqrt[1-6*x+5*x^2])), {x, 0, 20}], x] (* Vaclav Kotesovec, Mar 20 2014 *)
-
PARI
z='z+O('z^50); Vec((1-z)*(3-3*z-sqrt(1-6*z+5*z^2))/(2-(1-z)*(1-z-sqrt(1-6*z+5*z^2)))) \\ G. C. Greubel, Mar 20 2017
Formula
a(n) = A129165(n,0).
G.f.: (1-z)*(3-3*z-sqrt(1-6*z+5*z^2))/(2-(1-z)*(1-z-sqrt(1-6*z+5*z^2))).
a(n) ~ 82*5^(n+1/2)/(289*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Mar 20 2014
D-finite with recurrence 6*(n+1)*a(n) +2*(-25*n+11)*a(n-1) +(131*n-229)*a(n-2) +2*(-92*n+261)*a(n-3) +2*(81*n-311)*a(n-4) +(-91*n+439)*a(n-5) +(31*n-183)*a(n-6) +5*(-n+7)*a(n-7)=0. - R. J. Mathar, Jul 26 2022
Comments