A129177 Triangle read by rows: T(n,k) is the number of permutations p of {1,2,...,n} such that w(p)=k (n >= 0; 0 <= k <= n*(n-1)/2) (see comments for definition of w(p)).
1, 1, 1, 1, 2, 2, 1, 1, 6, 6, 3, 5, 2, 1, 1, 24, 24, 12, 20, 14, 10, 7, 5, 2, 1, 1, 120, 120, 60, 100, 70, 74, 59, 37, 30, 19, 15, 7, 5, 2, 1, 1, 720, 720, 360, 600, 420, 444, 474, 342, 240, 214, 160, 116, 89, 49, 36, 25, 15, 7, 5, 2, 1, 1, 5040, 5040, 2520, 4200, 2940, 3108, 3318
Offset: 0
Examples
T(4,2)=3 because we have w(1423) = w((1)(243)) = 0*1 + 1*3 = 3, w(1342) = w((1)(234)) = 0*1 + 1*3=3 and w(2134) = w((12)(3)(4)) = 0*2 + 1*1 + 2*1 = 3. Triangle starts: 1; 1; 1, 1; 2, 2, 1, 1; 6, 6, 3, 5, 2, 1, 1; 24, 24, 12, 20, 14, 10, 7, 5, 2, 1, 1;
Links
- Alois P. Heinz, Rows n = 0..50, flattened
- P. H. Edelman, R. Simion and D. White, Partition statistics on permutations, Discrete Math. 99 (1992), 63-68.
- M. Shattuck, Parity theorems for statistics on permutations and Catalan words, INTEGERS, Electronic J. of Combinatorial Number Theory, Vol. 5, Paper A07, 2005.
Programs
-
Maple
for n from 0 to 8 do P[n]:=sort(expand(product(i+t^i,i=0..n-1))) od: for n from 0 to 8 do seq(coeff(P[n],t,j),j=0..n*(n-1)/2) od; # yields sequence in triangular form # second Maple program: p:= proc(n) option remember; `if`(n<0, 1, expand((n+t^n)*p(n-1))) end: T:= n-> (h-> seq(coeff(h,t,i), i=0..degree(h)))(p(n-1)): seq(T(n), n=0..8); # Alois P. Heinz, Dec 16 2016
-
Mathematica
p[n_] := p[n] = If[n<0, 1, Expand[(n+t^n)*p[n-1]]]; T[n_] := Function[h, Table[Coefficient[h, t, i], {i, 0, Exponent[h, t]}]][p[n-1]]; Table[T[n], {n, 0, 8}] // Flatten (* Jean-François Alcover, Dec 22 2016, after Alois P. Heinz *)
Formula
Generating polynomial of row n is P[n](t) = Product_{i=0..n-1} (i + t^i).
Sum_{k=0..n*(n-1)/2} (k+1) * T(n,k) = A121586(n). - Alois P. Heinz, May 04 2023
Extensions
One term for row n=0 prepended by Alois P. Heinz, Dec 16 2016
Comments