cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A129180 Total area below all Schroeder paths of semilength n.

Original entry on oeis.org

0, 1, 11, 85, 583, 3785, 23843, 147437, 900559, 5453457, 32816315, 196531781, 1172634391, 6976059865, 41401814099, 245230349021, 1450162049695, 8563622372129, 50510963880299, 297627067200821, 1752169739791591, 10307304302433513, 60592569330907523
Offset: 0

Views

Author

Emeric Deutsch, Apr 08 2007

Keywords

Comments

A Schroeder path of semilength n is a lattice path from (0,0) to (2n,0) consisting of U=(1,1), D=(1,-1) and H=(2,0) steps and never going below the x-axis.

Examples

			a(2) = 11 because the areas below the Schroeder paths HH, HUD, UDH, UDUD, UHD and UUDD are 0,1,1,2,3 and 4, respectively.
		

Crossrefs

Programs

  • Maple
    g:=(1+z)*(1-z-sqrt(1-6*z+z^2))^2/4/z/(1-6*z+z^2): gser:=series(g,z=0,30): seq(coeff(gser,z,n),n=0..24);
  • Mathematica
    CoefficientList[Series[(1 + x)*(1 - x - Sqrt[1 - 6*x + x^2])^2/(4*x*(1 - 6*x + x^2)), {x, 0, 20}], x] (* Vaclav Kotesovec, Mar 03 2016 *)
  • Maxima
    a(n):=sum((((sqrt(2)+1)^(2*k+1)-(1-sqrt(2))^(2*k)*sqrt(2)+(1-sqrt(2))^(2*k))*sum(binomial(n+1-k,i+2)*binomial(n-k+i,i),i,0,n-k+1))/(n-k+1),k,0,n); /* Vladimir Kruchinin, Mar 02 2016 */

Formula

a(n) = Sum_{k=0..n^2} k * A129179(n,k).
G.f.: (1+z)*(1-z-sqrt(1-6*z+z^2))^2/(4*z*(1-6*z+z^2)) (obtained by computing (dG/dt)_{t=1} where G=G(t,z) is defined by G(t,z) = 1+z*G(t,z)+t*z*G(t,t^2*z)G(t,z); see A129179).
a(n) = Sum_{k=0..n} 2*A002315(k)*(Sum_{i=0..n-k+1} binomial(n+1-k,i+2)*binomial(n-k+i,i))/(n-k+1). - Vladimir Kruchinin, Mar 02 2016
a(n) ~ 1/2 * (1+sqrt(2))^(2*n+1). - Vaclav Kotesovec, Mar 03 2016
D-finite with recurrence -(n+1)*(2*n-5)*a(n) +3*(4*n+1)*(2*n-5)*a(n-1) +(-76*n^2+228*n-89)*a(n-2) +3*(2*n-1)*(4*n-13)*a(n-3) -(2*n-1)*(n-4)*a(n-4)=0. - R. J. Mathar, Jul 26 2022