cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A129181 Triangle read by rows: T(n,k) is the number of Motzkin paths of length n such that the area between the x-axis and the path is k (n>=0; 0<=k<=floor(n^2/4)).

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 1, 4, 6, 4, 3, 2, 1, 1, 5, 10, 10, 8, 7, 5, 3, 1, 1, 1, 6, 15, 20, 19, 18, 16, 12, 8, 6, 3, 2, 1, 1, 7, 21, 35, 40, 41, 41, 36, 29, 23, 18, 12, 9, 5, 3, 1, 1, 1, 8, 28, 56, 76, 86, 93, 92, 83, 72, 62, 50, 40, 30, 22, 14, 10, 6, 3, 2, 1, 1, 9, 36, 84, 133, 168
Offset: 0

Views

Author

Emeric Deutsch, Apr 08 2007

Keywords

Comments

Row n has 1+floor(n^2/4) terms.
Row sums are the Motzkin numbers (A001006).

Examples

			T(5,3) = 4 because we have LULLD, ULLDL, UDULD and ULDUD, where U=(1,1), L=(1,0) and D=(1,-1).
Triangle starts:
00: 1;
01: 1;
02: 1, 1;
03: 1, 2,  1;
04: 1, 3,  3,  1,  1;
05: 1, 4,  6,  4,  3,  2,  1;
06: 1, 5, 10, 10,  8,  7,  5,  3, 1, 1;
07: 1, 6, 15, 20, 19, 18, 16, 12, 8, 6, 3, 2, 1;
...
From _Joerg Arndt_, Apr 19 2014: (Start)
Row n=5 corresponds to the following Motzkin paths (dots denote zeros):
# :   height in path   area    step in path
01:  [ . . . . . . ]     0     0 0 0 0 0
02:  [ . . . . 1 . ]     1     0 0 0 + -
03:  [ . . . 1 . . ]     1     0 0 + - 0
04:  [ . . . 1 1 . ]     2     0 0 + 0 -
05:  [ . . 1 . . . ]     1     0 + - 0 0
06:  [ . . 1 . 1 . ]     2     0 + - + -
07:  [ . . 1 1 . . ]     2     0 + 0 - 0
08:  [ . . 1 1 1 . ]     3     0 + 0 0 -
09:  [ . . 1 2 1 . ]     4     0 + + - -
10:  [ . 1 . . . . ]     1     + - 0 0 0
11:  [ . 1 . . 1 . ]     2     + - 0 + -
12:  [ . 1 . 1 . . ]     2     + - + - 0
13:  [ . 1 . 1 1 . ]     3     + - + 0 -
14:  [ . 1 1 . . . ]     2     + 0 - 0 0
15:  [ . 1 1 . 1 . ]     3     + 0 - + -
16:  [ . 1 1 1 . . ]     3     + 0 0 - 0
17:  [ . 1 1 1 1 . ]     4     + 0 0 0 -
18:  [ . 1 1 2 1 . ]     5     + 0 + - -
19:  [ . 1 2 1 . . ]     4     + + - - 0
20:  [ . 1 2 1 1 . ]     5     + + - 0 -
21:  [ . 1 2 2 1 . ]     6     + + 0 - -
(End)
		

Crossrefs

Antidiagonal sums give A186085(n+1).

Programs

  • Maple
    G:=1/(1-z-t*z^2*g[1]): for i from 1 to 13 do g[i]:=1/(1-t^i*z-t^(2*i+1)*z^2*g[i+1]) od: g[14]:=0: Gser:=simplify(series(G,z=0,13)): for n from 0 to 10 do P[n]:=sort(coeff(Gser,z,n)) od: for n from 0 to 10 do seq(coeff(P[n],t,j),j=0..floor(n^2/4)) od; # yields sequence in triangular form
    # second Maple program
    b:= proc(x, y, k) option remember;
          `if`(x<0 or xx^2, 0,
          `if`(x=0, 1, add(b(x-1, y+i, k-y-i/2), i=-1..1)))
        end:
    T:= (n, k)-> b(n, 0, k):
    seq(seq(T(n, k), k=0..floor(n^2/4)), n=0..12); # Alois P. Heinz, Jun 28 2012
  • Mathematica
    b[x_, y_, k_] := b[x, y, k] = If[x<0 || xx^2, 0, If[x==0, 1, Sum[b[x-1, y+i, k-y-i/2], {i, -1, 1}]]]; T[n_, k_] := b[n, 0, k]; Table[Table[ T[n, k], {k, 0, Floor[n^2/4]}], {n, 0, 12}] // Flatten (* Jean-François Alcover, Mar 24 2015, after Alois P. Heinz *)

Formula

G.f. G(t,z) satisfies G(t,z) = 1 + z*G(t,z) + t*z^2*G(t,t*z)*G(t,z).
Sum_{k>=0} k * T(n,k) = A057585(n).
Sum_{j=0..n} T(n-j,j) = A186085(n+1). - Alois P. Heinz, Jun 25 2023