A129227 a(n) is that prime number, p, less than n*Pi such that n*Pi/p has the smallest fractional part.
3, 3, 3, 11, 5, 17, 7, 5, 7, 31, 17, 37, 37, 43, 47, 5, 53, 53, 59, 31, 13, 23, 71, 73, 13, 79, 83, 29, 13, 47, 97, 97, 103, 53, 109, 113, 29, 17, 61, 31, 127, 131, 67, 137, 47, 71, 73, 149, 151, 157, 157, 163, 83, 167, 43, 173, 179, 181, 37, 47, 191, 97, 197, 67, 17, 103
Offset: 1
Examples
a(4)=11 because 4*Pi/11 = 1.142... and the fractional part 0.142... represents the smallest remainder resulting from the division of 4*Pi by a prime number less than 4*Pi.
Crossrefs
Cf. A129228.
Programs
-
Mathematica
f[n_] := (p = Denominator[ Min[ FractionalPart[(n*Pi / Prime@ Range@ PrimePi[n*Pi])]] [[2]]]; If[p == 1, n, p]); Array[f, 66] (* Robert G. Wilson v, Apr 08 2007 *)
-
Sage
A129227 = lambda n: sorted(primes(floor(n*pi)+1), key=lambda p: (n*pi/p-floor(n*pi/p)))[0] # D. S. McNeil, Dec 11 2010
Extensions
Edited and extended by Robert G. Wilson v, Apr 08 2007